| 注册
首页|期刊导航|湖南工业大学学报|基于改进自适应粒子群算法的MPPT追踪系统

基于改进自适应粒子群算法的MPPT追踪系统

刘吉庆 王艳

湖南工业大学学报2024,Vol.38Issue(5):18-25,8.
湖南工业大学学报2024,Vol.38Issue(5):18-25,8.DOI:10.3969/j.issn.1673-9833.2024.05.003

基于改进自适应粒子群算法的MPPT追踪系统

MPPT Tracking System Design Based on an Improved Particle Swarm Optimization Algorithm

刘吉庆 1王艳1

作者信息

  • 1. 湖南科技大学 信息与电气工程学院,湖南 湘潭 411201
  • 折叠

摘要

Abstract

In view of an optimization of the tracking accuracy and tracking time of Maximum Power Point Tracking(MPPT)technology,an improved Adaptive Particle Swarm Optimization(APSO)algorithm has thus been proposed.An optimization can be achieved of the traditional PSO algorithm by introducing adaptive inertia weights and nonlinear learning factors so as to accelerate MPPT tracking in the global optimization-local optimization-global optimization state.Subsequently,a photovoltaic power generation system is to be established for an simulation and verification of the adaptive particle swarm optimization algorithm.Experimental results indicate that compared to traditional PSO algorithms,the improved APSO algorithm is characterized with a higher tracking accuracy and faster convergence speed.Under constant and variable temperatures in an unobstructed environment(STC),the convergence speed has increased by 30.6%and 39.2%respectively,while the convergence speed under constant and variable temperatures in a partial occlusion(PSC)has increased by 54.0%and 53.7%,showing a performance superiority of the improved APSO algorithm in PSC environments.Furthermore,the PSO algorithm exhibits oscillations in the duty cycle after stabilizing the maximum power,while the APSO algorithm maintains a stable duty cycle,thereby improving the overall stability of the system.

关键词

光伏发电/MPPT/APSO/自适应惯性权重/非线性学习因子

Key words

photovoltaic power generation/MPPT/APSO/adaptive inertia weight/nonlinear learning factor

分类

信息技术与安全科学

引用本文复制引用

刘吉庆,王艳..基于改进自适应粒子群算法的MPPT追踪系统[J].湖南工业大学学报,2024,38(5):18-25,8.

基金项目

纳智能材料器件教育部重点实验室开放课题基金资助项目NJ2022002(INMD-2022M09) (INMD-2022M09)

湖南工业大学学报

1673-9833

访问量1
|
下载量0
段落导航相关论文