|国家科技期刊平台
首页|期刊导航|郑州大学学报(工学版)|基于改进WGAN-GP和ResNet的车联网入侵检测方法

基于改进WGAN-GP和ResNet的车联网入侵检测方法OA北大核心CSTPCD

An Intrusion Detection Method for Internet of Vehicles Based on Improved WGAN-GP and ResNet

中文摘要英文摘要

为保护车联网系统免受网络攻击的威胁,同时提高车联网入侵检测的准确率,针对车辆网络数据流量大且攻击类型不平衡的特点,提出了一种新的车联网入侵检测方法(AQVAE-RGSNet).该方法通过一种对抗量化变分自编码器以对车辆网络数据进行不平衡处理,该编码器通过结合矢量量化变分自编码器与带梯度惩罚的生成对抗网络进行构建,以缓解数据集中异常攻击类型样本数量极度不平衡的问题,并使用 ResNet网络与改进的分段残差神经网络对输入的样本数据进行联合学习并预测其攻击类型.实验结果表明:AQVAE-RGSNet在车联网数据集CICIDS2017 和 CAN-intrusion-dataset上的 F1 得分分别达到了 0.998 6 和 0.999 7;在保证最佳训练效果的前提下,能够更有效地识别车辆网络之中的攻击威胁.

In order to protect the Internet of Vehicles system from the threat of network attacks and improve the ac-curacy of intrusion detection,a new intrusion detection method(AQVAE-RGSNet)was proposed for the character-istics of large data flow and unbalanced attack types in the vehicle network.Firstly,the adversarial quantized varia-tional auto encoder was used to process the vehicle network data imbalance.And it was constructed by combining the vector quantized variational auto encoder-2 and the generative adversarial network with gradient penalty to alle-viate the extremely unbalanced number of samples of abnormal attack types in the dataset.Afterwards,the ResNet and improved segmented residual neural network were used to learn the input sample data and predict its attack cat-egory.The experimental results indicated that AQVAE-RGSNet achieved F1 scores of 0.998 6 and 0.999 7 on the vehicle networking dataset CICDS2017 and CAN-intrusion-dataset,respectively.On the premise of ensuring the best training effect,it could identify attack threats more effectively in the vehicle network.

魏明军;李凤;刘亚志;李辉

华北理工大学 人工智能学院,河北 唐山 063210||河北省工业智能感知重点实验室,河北 唐山 063210华北理工大学 人工智能学院,河北 唐山 063210

计算机与自动化

车联网入侵检测生成对抗网络残差神经网络特征融合

Internet of Vehiclesintrusion detectiongenerate adversarial networksresidual neural networkfea-ture fusion

《郑州大学学报(工学版)》 2024 (004)

30-37 / 8

河北省高等学校科学技术研究项目(ZD2022102)

10.13705/j.issn.1671-6833.2024.04.008

评论