基于关系学习的小样本知识图谱补全模型OA北大核心CSTPCD
Relation Learning Completion Model for Few-shot Knowledge Graphs
在小样本知识图谱中,实体对之间的关系表示复杂多样.然而,现有的小样本知识图谱补全方法普遍存在关系学习能力不足和忽略实体上下文语义的问题.为解决这些问题,提出了一种基于关系学习的小样本知识图谱补全模型 FRLC.首先,在聚合高阶邻域实体信息的过程中引入了门控机制,这一步骤旨在丰富中心实体表达的同时减少噪声对邻居的不良影响.其次,在关系学习阶段充分利用参考集实体对之间的相关性,实现更加准确的关系表示.最后,在 Transformer学习器中,引入了 LSTM 结构进一步学习实体和关系的上下文语义信息,用于预测新的事实知识.为了验证 FRLC的有效性,在公开的 NELL-One 和 Wiki-One 数据集上将 FRLC 与 6 个小样本知识图谱补全模型和 5 个传统模型的 5-shot链接预测进行了对比实验,结果表明:FRLC 在 MRR、Hits@10、Hits@5 和 Hits@1 这 4 个指标上都有所提升,证明了模型的有效性.
In few-show knowledge graphs,the representation of relationships between entity pairs was diverse and complex.However,existing few-show knowledge graph completion methods commonly suffered from insufficient re-lational learning capabilities and the neglect of contextual semantics associated with entities.To address these chal-lenges,a novel approach called the few-shot relation learning completion model(FRLC)was proposed.Firstly,during the process of aggregating high-order neighborhood entity information,a gating mechanism was introduced to mitigate the adverse effects of noise on neighbors while enriching the representation of central entities.Secondly,in the phase of relation representation learning,the correlations among entity pairs in a reference set were leveraged to obtain more accurate relationship representations.Lastly,within the Transformer-based learning framework,an LSTM structure was incorporated to further capture contextual semantic information of entities and relationships,which was used for predicting new factual knowledge.To validate the effectiveness of FRLC,comparative experi-ments were conducted on the publicly available NELL-One and Wiki-One datasets,in which FRLC was compared with six few-shot knowledge graph completion models and five traditional models for 5-shot link prediction.The ex-perimental results showed improvements in FRLC across four metrics:MRR,Hits@10,Hits@5,and Hits@1,demonstrating the model's effectiveness.
李卫军;顾建来;张新勇;高庾潇;刘锦彤
北方民族大学 计算机科学与工程学院,宁夏 银川 750021
计算机与自动化
知识图谱补全小样本关系邻域聚合链接预测
knowledge graph completionfew-shot relationneighborhood aggregationlink prediction
《郑州大学学报(工学版)》 2024 (004)
53-61 / 9
中央高校基本科研业务费专项资金资助项目(2021JCYJ12);国家自然科学基金资助项目(62066038,61962001);宁夏自然科学基金资助项目(2021AAC03215)
评论