|国家科技期刊平台
首页|期刊导航|集成电路与嵌入式系统|面向投票类AI分类器的零冗余存储器容错设计

面向投票类AI分类器的零冗余存储器容错设计OACSTPCD

Redundancy-free error-tolerant memory design for voting-based AI classifiers

中文摘要英文摘要

投票类分类器广泛应用于多种人工智能(Artificial Intelligence,AI)场景,在其电路系统中,用于存储已知样本信息的存储器易受到辐射、物理特性变化等多种效应影响,引发软错误,继而可能导致分类失败.因此,在高安全性领域应用的AI分类器,其存储电路需要进行容错设计.现有存储器容错技术通常采用错误纠正码,但面向AI系统,其引入的冗余会进一步加剧本就面临挑战的存储负担.因此本文提出一种零冗余存储器容错技术,采用纠正错误对分类结果的负面影响而非纠正错误本身的设计思想,利用错误造成的数据翻转现象恢复出正确的分类结果.通过对k邻近算法进行实验验证,本文提出的技术在不引入任何冗余的情况下可达到近乎完全的容错能力,且相比于现有技术,节省了大量硬件开销.

Voting-based classifiers are widely used in many Artificial Intelligence(AI)applications.In their implementation,memories that store all known data are prone to suffer different effects like radiation and physical variations,causing soft errors and can even change the classification results.Therefore,error-tolerance must be achieved in these memories for safety-critical applications.Existing error-tolerant techniques commonly utilize error correction codes,however,the memory redundancy they introduce further increases the burden of storage.In this paper,a redundancy-free technique is proposed by focusing on the impact of errors on the classification perform-ance,instead of the error itself.It can recover the error-free classification results under errors by exploiting the flipped data.A k nearest neighbor classifier is taken as a case study to evaluate the proposed technique.The simulation results show that the proposed scheme of-fers almost full error tolerance without incurring any memory redundancy,moreover,it significantly reduces the hardware overheads for protection circuits compared to existing techniques.

柳姗姗;金辉;刘思佳;王天琦;周彬;马瑶;王碧;常亮;周军

电子科技大学信息与通信工程学院,成都 611731北京航空航天大学集成电路科学与工程学院,北京 100191哈尔滨工业大学空间环境与物质科学研究院,哈尔滨 150001四川大学物理学院,成都 610065

电子信息工程

存储器软错误人工智能分类器错误纠正码k邻近算法

memorysoft errorsartificial intelligenceclassifierserror correction codesk nearest neighbors

《集成电路与嵌入式系统》 2024 (006)

1-8 / 8

国家自然科学基金(12075069,61771167,11775061,11805045);四川省基金重点项目(2019YFSY0028);强脉冲辐射环境模拟与效应国家重点实验室项目(SKLIPR1912,SKPLIPR2015).

评论