| 注册
首页|期刊导航|计算机应用研究|面向分布式复杂数据样本的联邦语义分割方法综述

面向分布式复杂数据样本的联邦语义分割方法综述

董成荣 姚俊萍 李晓军 苏逸 周志杰

计算机应用研究2024,Vol.41Issue(6):1610-1617,8.
计算机应用研究2024,Vol.41Issue(6):1610-1617,8.DOI:10.19734/j.issn.1001-3695.2023.09.0420

面向分布式复杂数据样本的联邦语义分割方法综述

Survey on federated semantic segmentation methods for distributed complex data samples

董成荣 1姚俊萍 1李晓军 1苏逸 1周志杰1

作者信息

  • 1. 火箭军工程大学,西安 710025
  • 折叠

摘要

Abstract

Semantic segmentation plays a crucial role in various fields such as medical image analysis and battlefield situatio-nal awareness.However,a single client often cannot provide a sufficient quantity and diversity of training data for the model.Therefore,it is necessary to train semantic segmentation models from distributed data,which exhibits complex and diverse characteristics.To prevent data privacy breaches and safeguard data security,the application of federated learning in the col-laborative training of semantic segmentation models across multiple clients has become a hot research topic in the field.Buil-ding upon the definition of federated semantic segmentation,this paper conducted a comprehensive analysis around the key characteristics of data heterogeneity and label deficiency in distributed complex data samples.The study encompassed a review of issues,methods,and exemplary model instances in federated semantic segmentation,evaluating the applicability and cha-racteristics of different methods,summarizing current application outcomes.The paper also proposed potential research oppor-tunities to address the issues of data heterogeneity and label deficiency.The research provides insights and references for the development of federated semantic segmentation methods and related studies tailored for distributed complex data samples.

关键词

语义分割/联邦学习/协同训练/数据异质性/标签缺失

Key words

semantic segmentation/federated learning/collaborative training/data heterogeneity/label deficiency

分类

信息技术与安全科学

引用本文复制引用

董成荣,姚俊萍,李晓军,苏逸,周志杰..面向分布式复杂数据样本的联邦语义分割方法综述[J].计算机应用研究,2024,41(6):1610-1617,8.

基金项目

国家自然科学基金资助项目(61833016,62227814) (61833016,62227814)

陕西省科技创新团队项目(2022TD-24) (2022TD-24)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量4
|
下载量0
段落导航相关论文