城市地区场次降雨时空展布方法研究OA
Study on spatial-temporal feature extraction of rainstorm in urban areas
受气候变化和城市规模不断扩张等因素影响,城市地区降雨过程的时空动态性愈发明显,通常采用的点、面雨量等表达方式难以体现这种时空动态性.随着降雨观测技术的进步,大多城市积累了长序列降雨观测数据,其中蕴含了丰富的降雨时空过程信息,为预报降雨或设计降雨的时空展布提供了可能.设计了一套降雨时空展布方法,包括数据收集、标准化处理、降雨场次划分、时空模式提取、标准网格插值、时空展布等环节,并提出每个环节的处理步骤和关键问题.以北京市为例,对该技术方法进行了验证,选择了12 h、24 h、72 h 3个历时的场次降雨,提取的时空模式和展布结果表达出了场次降雨的时空动态性,并与历史的降雨过程表现出很好的匹配性.表明该方法可用于城市地区降雨典型模式提取,以及降雨过程的时空展布.该方法利用历史降雨数据提取降雨展布模板,输入场次降雨(或预报降雨)的总雨量,得到该场次降雨的时空分布过程,展布结果可为洪水预报提供更为准确的降雨输入条件.
Under the influence of climate change and the continuous expansion of urban scale and other factors,the spatial-temporal dynamics of frequent extreme rainstorms in urban areas is becoming more and more obvious,but the commonly used expression methods such as point/area rainfall are difficult to reflect this spatial-temporal dynamics.With the advancement of rainfall observation technology,most cities have accumulated long-term rainfall observation data,which contains rich information on rainfall spatiotemporal processes,providing possibilities for predicting rainfall or designing the spatiotemporal distribution of rainfall.Based on the comprehensive use of machine learning,spatial analysis and other methods,this paper designs a set of technical processes for the extraction of spatial-temporal characteristics of rainstorms in urban areas,including data collection,standardized processing,rainstorm field division,spatial-temporal feature extraction,achievement expression methods and other links,and analyzes the processing steps and key problems of each link,Taking the rainstorm in Beijing as an example,the technical process is instantiated and verified.The temporal and spatial characteristics of the rainstorm in Beijing during 12 h,24 h and 72 h were successfully extracted.The extraction results showed the temporal and spatial dynamic process of the rainstorm,and good matching with the actual rainfall processes.This indicates that the method can be used for extracting typical rainfall patterns in urban areas and for spatiotemporal distribution of rainfall processes.This method uses historical rainfall data to extract rainfall distribution templates,inputs the total rainfall(or forecast rainfall)of a rainfall event,and obtains the spatiotemporal distribution process of the rainfall event.The distribution results can provide more accurate rainfall input conditions for flood forecasting.
刘业森;刘媛媛;刘舒;杜庆顺
中国水利水电科学研究院,北京 100038||水利部防洪抗旱减灾工程技术研究中心,北京 100038||水利部数字孪生流域重点实验室,北京 100038淮河水利委员会沂沭泗水利管理局水文局(信息中心),徐州 221018
大气科学
降雨过程场次划分时空模式机器学习时空展布城市洪涝北京市
rainfall processdivision of sessionsspatiotemporal patternsmachine learningspace and time distributionurban floodingBeijing City
《中国防汛抗旱》 2024 (006)
18-25 / 8
国家自然科学基金重大项目(52394235).
评论