基于非线性各向异性滤波的图像特征匹配算法OA北大核心CSTPCD
Image feature matching algorithm based on nonlinear anisotropic filtering
图像特征匹配是增强现实系统中的关键技术,匹配精度是提升特征匹配性能的关键.提出了一种多尺度特征匹配加强算法(I-AKAZE),通过对非线性各向异性滤波过程中传导函数的改进,减缓图像梯度值大的区域非线性扩散速度,极大程度地保留了匹配图像的边缘特征;同时,结合改进的非线性量化加速稳健特征描述符(NLG-SURF),提高了描述符的识别率.实验结果表明I-AKAZE算法在Mikolajczyk数据集上的可重复性得分相比目前先进的AKAZE算法有着大幅度提升,对应的特征描述符的平均识别率提升8.4%,并且运行速度比经典的SIFT算法快约19%,算法整体在检测和描述阶段上的性能都有提升.
Image matching is the key technology in augmented reality system,and matching accuracy is the key to improving the performance of feature matching.A multi-scale feature matching enhancement algorithm(I-AKAZE)is proposed.By improving the conduction function in the process of nonlinear anisotropic filtering,the nonlinear diffusion speed in the region with large gradient value of the image is slowed down,and the edge features of the matched image are retained to a great extent.At the same time,combined with the improved nonlinear quantization accelerated robust feature descriptor(NLG-SURF),the recognition rate of the descriptor is improved.The experimental results show that the repeatability score of I-AKAZE algorithm on Mikolajczyk data set is greatly improved compared with the current advanced AKAZE algorithm,that the average recognition rate of the corresponding feature descriptors is increased by 8.4%,and that the running speed is about 600 ms faster than that of the classic SIFT algorithm.The overall performance of the algorithm is improved in the detection and description stages.
李华;杨杨;陈雨杰
长春理工大学计算机科学技术学院,长春 130000||特种电影技术及装备国家地方联合工程研究中心,长春 130000||数字媒体与虚拟现实实验室(长春理工大学),长春 130000长春理工大学计算机科学技术学院,长春 130000||数字媒体与虚拟现实实验室(长春理工大学),长春 130000
计算机与自动化
特征检测特征描述符非线性各向异性滤波尺度空间传导函数
feature detectionfeature descriptornonlinear filteringscale spaceconduction function
《中国空间科学技术》 2024 (003)
157-166 / 10
国家自然科学基金(U19A2063);吉林省科技厅自然科学基金项目(20210101412JC);吉林省教育厅科学技术研究规划项目(JJKH20210845KJ)
评论