|国家科技期刊平台
首页|期刊导航|光学精密工程|双路混合注意力的跨层次特征聚合图像增强

双路混合注意力的跨层次特征聚合图像增强OA北大核心CSTPCD

Cross-level feature aggregation image enhancement with dual-path hybrid attention

中文摘要英文摘要

针对低照度图像存在亮度低、噪声大、颜色偏差和细节纹理丢失等问题,提出一种双路混合注意力的跨层次特征聚合图像增强方法.首先,设计多尺度双路注意力残差模块(Multi-scale Dual-path Attention Residual module,MDAR),MDAR包括并行多尺度特征采样块(Parallel Multi-scale Feature Sampling Block,PMFB)和双路混合注意力块(Dual-path Hybrid Attention Block,DHAB).其中PMFB用于提取和融合多尺度特征信息,促进局部特征的全局化表示,使图像细节信息得到有效增强,而DHAB能够对图像噪声区域和颜色信息给予更大关注,缓解不同注意力间特征的差异,有效抑制噪声,提高图像质量.此外,设计跨层次特征聚合模块(Cross-level Feature Aggregation Module,CFAM),将不同层次特征进行融合,弥补深层特征与浅层特征之间的差异,强化对浅层特征的感知,实现图像增强.实验结果表明,所提方法在LOL数据集上的PSNR,SSIM,LPIPS和NIQE分别达到了22.347 dB,0.850,0.178和4.153;在MIT-Adobe 5K数据集上的PSNR,SSIM,LPIPS和NIQE分别达到了22.703 dB,0.903,0.137和3.822.与其他算法相比均有较大提升,证明了所提方法的有效性.

To address the problems of low brightness,high noise,color deviation and loss of detail and texture in low-light images,this study proposed an image enhancement method using dual-channel hybrid attention and cross-level feature aggregation.Firstly,the Multi-scale dual-path attention residual module(MDAR)was designed.MDAR included a Parallel multi-scale feature sampling block(PMFB)and a Dual-path hybrid attention block(DHAB).By extracting and fusing multi-scale feature information,PMFB promoted the global representation of local features,and effectively enhanced image details.DHAB could pay more attention to image noise regions and color information,which not only alleviates the feature differences between different attention spans,but also effectively suppress noise and improve image quality.In addition,this paper designed a Cross-level feature aggregation module(CFAM),which fuses features at different levels to make up for the differences between deep features and shallow features,strengthen the perception of shallow features,and achieve image enhancement.Experimental results indi-cate that the PSNR,SSIM,LPIPS and NIQE of the proposed method on the LOL dataset reached 22.347 dB,0.850,0.178 and 4.153 respectively and the PSNR,SSIM,LPIPS and NIQE of the pro-posed method on the MIT-Adobe 5K dataset reached 22.703 dB,0.903,0.137 and 3.822 respectively.Compared with other algorithms,the algorithm in this paper has been greatly improved,which proves the effectiveness of the proposed method.

袁姮;王笑雪;颜廷昊;张晟翀

辽宁工程技术大学 软件学院,辽宁 葫芦岛 125100光电信息控制和安全技术重点实验室,天津 300308

计算机与自动化

图像增强多尺度混合注意力特征聚合

image enhancementmulti-scalemixed attentioncharacteristic polymerization

《光学精密工程》 2024 (010)

1538-1551 / 14

国防预研基金项目(No.172068);辽宁省自然科学基金(No.20170540426);辽宁省教育厅重点基金(No.LJYL049)

10.37188/OPE.20243210.1538

评论