| 注册
首页|期刊导航|光学精密工程|改进YOLOv7的服务机器人密集遮挡目标识别

改进YOLOv7的服务机器人密集遮挡目标识别

陈仁祥 邱天然 杨黎霞 余腾伟 贾飞 陈才

光学精密工程2024,Vol.32Issue(10):1595-1605,11.
光学精密工程2024,Vol.32Issue(10):1595-1605,11.DOI:10.37188/OPE.20243210.1595

改进YOLOv7的服务机器人密集遮挡目标识别

A method for dense occlusion target recognition of service robots based on improved YOLOv7

陈仁祥 1邱天然 1杨黎霞 2余腾伟 1贾飞 1陈才3

作者信息

  • 1. 重庆交通大学 交通工程应用机器人重庆市工程实验室,重庆 400074
  • 2. 重庆科技学院 工商管理学院,重庆 401331
  • 3. 重庆智能机器人研究院,重庆 400714
  • 折叠

摘要

Abstract

Aiming at the problem of poor recognition effect due to dense occlusion of the target to be recog-nized during visual grasping of service robots,we propose to improve the dense occlusion target recogni-tion method for service robots with YOLOv7.First,in order to improve the problem of recognition diffi-culties caused by the loss of feature information of densely occluded targets,a deep over-parameterized convolution was used to construct a deep over-parameterized high-efficiency aggregation network,and dif-ferent convolution kernels were used to operate on each channel to enhance the network sensing ability,so that the network focused on the features of the target's uncovered area;second,in order to suppress the influ-ence caused by dense occlusions and indistinguishable target boundaries on recognition,the coordinate atten-tion mechanism was embedded into the backbone network.This enabled the network to obtain target posi-tion information and paid more attention to the important areas in the feature map,thereby enhancing the ca-pability of the network to extract features;finally,the Ghost network was used to improve the lightweight-ing,reduce the number of parameters of the network model and the number of floating-point operations to re-alize the lightweighting,reduce the memory occupation of the model,and increase the model operation effi-ciency.Comparison experiments were conducted on the model in the self-constructed dataset and the public dataset respectively,and the experimental results show that the improved model achieves a mAP of 92.9%on the self-constructed dataset and 87.8%on the public dataset,which is better than the original method and the other commonly used methods.In this paper,the model reduces the memory footprint while the recogni-tion accuracy and recognition efficiency are improved,and the overall performance is better.

关键词

密集遮挡/改进YOLOv7/服务机器人/目标识别

Key words

dense occlusion/improved YOLOv7/service robots/target recognition

分类

计算机与自动化

引用本文复制引用

陈仁祥,邱天然,杨黎霞,余腾伟,贾飞,陈才..改进YOLOv7的服务机器人密集遮挡目标识别[J].光学精密工程,2024,32(10):1595-1605,11.

基金项目

国家自然科学基金(No.51975079) (No.51975079)

重庆市教委科学技术研究项目(No.KJZD-M202200701) (No.KJZD-M202200701)

重庆市自然科学基金创新发展联合基金(No.CSTB2023NSCQ-LZX0127) (No.CSTB2023NSCQ-LZX0127)

重庆市研究生联合培养基地项目(No.JDLHPYJD2021007) (No.JDLHPYJD2021007)

重庆市专业学位研究生教学案例库(No.JDALK2022007) (No.JDALK2022007)

重庆市研究生科研创新项目(No.CYS23509) (No.CYS23509)

重庆科技大学科研启动项目(No.ckre202212030) (No.ckre202212030)

光学精密工程

OA北大核心CSTPCD

1004-924X

访问量0
|
下载量0
段落导航相关论文