|国家科技期刊平台
首页|期刊导航|化工学报|不同截面肋柱-软尾结构单相流动传热比较

不同截面肋柱-软尾结构单相流动传热比较OA北大核心CSTPCD

Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures

中文摘要英文摘要

基于任意拉格朗日-欧拉(ALE)方法,利用动网格技术和重叠网格技术数值模拟研究了不同Reynolds数、截面形状以及长径比下的肋柱-软尾结构在通道中的双向流固耦合换热问题.模拟工况为:Reynolds数Re=200,275,351;肋柱截面形状:圆形和方形;长径比k=2,3,4.研究表明:Re=275时圆形截面肋柱-软尾结构的流动换热综合能力优于方形截面结构,k=3时圆形截面肋柱-软尾结构的流动换热综合能力最佳,肋柱周围的局部换热能力方形截面结构好于圆形截面结构;k=3时,随着Reynolds数的增大,不同截面形状的肋柱-软尾结构的流动换热综合能力逐渐升高,并且高Reynolds数、高长径比的圆形截面综合流动换热能力最佳;与不加软尾肋柱结构的流动换热能力进行对比发现,对于圆形截面形状的肋柱结构,增加软尾后综合换热能力增大了19.46%.

Enhanced heat transfer technique using vortex-induced vibration is an effective way to realize the cooling of heat exchange equipment.In this paper,based on the arbitrary Lagrange-Euler(ALE)algorithm,the two-way fluid-structure-interaction and heat transfer problem in the channel of rib-soft tail structure with different Reynolds numbers,different cross-sectional shapes,and different length-to-diameter ratios is investigated by using numerical simulations with dynamic mesh and overset mesh technique,and the main research objects are the flow and heat transfer characteristics around the rib-soft tail structure,the heat transfer characteristics of the ribbed heated wall,and the integrated flow and heat transfer capacity of the whole channel.The simulation working conditions are:Reynolds number Re=200,275,351;rib cross-sectional shapes:circular and square;length-to-diameter ratio k=2,3,4.The results show that,at Reynolds number Re=275,the flow-heat transfer capability of the rib-soft tail structure with circular cross-section is better than that of the structure with square cross-section,and the rib-soft tail structure with circular cross-section is optimal when the length-to-diameter ratio k=3;and the local heat transfer capacity around the rib is better for square cross-section structure than for circular ones.With the increase of Reynolds number at the length-to-diameter ratio k=3,the combined flow-heat transfer capacity of rib-soft tail structure with different cross-sections increases gradually.Moreover,the integrated flow heat transfer capacity of circular cross-section with high Reynolds number and high length-to-diameter ratio is the best.Comparing the flow-heat transfer capacity with a rib structure without soft tail,for the circular cross-section rib structure,the integrated heat transfer capacity increases by 19.46%after adding the soft tail structure,whereas for the square cross-section rib,the capacity decreases slightly after adding the soft-tail.This provides a theoretical basis for studying the cooling design of heat exchange equipment.

谢磊;徐永生;林梅

西安交通大学能源与动力工程学院,陕西 西安 710049南方电网科学研究院有限责任公司直流输电技术国家重点实验室,广东 广州 510080

能源与动力

任意拉格朗日-欧拉方法动网格数值模拟弹性层流热流固耦合强化换热

arbitrary Lagrange-Euler Algorithmdynamic meshnumerical simulationelasticitylaminar flowheat-fluid-solid couplingenhanced heat transfer

《化工学报》 2024 (005)

1787-1801 / 15

国家自然科学基金项目(51876146)

10.11949/0438-1157.20240068

评论