| 注册
首页|期刊导航|红外技术|基于密集残差生成对抗网络的红外图像去模糊

基于密集残差生成对抗网络的红外图像去模糊

李立 易诗 刘茜 程兴豪 王铖

红外技术2024,Vol.46Issue(6):663-671,9.
红外技术2024,Vol.46Issue(6):663-671,9.

基于密集残差生成对抗网络的红外图像去模糊

Infrared Image Deblurring Based on Dense Residual Generation Adversarial Network

李立 1易诗 1刘茜 1程兴豪 1王铖1

作者信息

  • 1. 成都理工大学 机电工程学院,四川 成都 610059
  • 折叠

摘要

Abstract

During infrared(IR)image capture,the shaking of camera equipment or rapid movement of the target causes motion blur in the image,significantly affecting the extraction and recognition of effective information.To address these problems,this study proposes an infrared image deblurring method based on a dense residual generation adversarial network(DeblurGAN).First,multiscale convolution kernels are employed to extract features at different scales and levels from infrared images.Second,a residual-in-residual dense block(RRDB)is used,instead of the residual unit in the original generation network,to improve the detail of the recovered IR images.Experiments were conducted on the infrared image dataset collected by our group,and the results show that compared to DeblurGAN,the proposed method improves PSNR by 3.60 dB and SSIM by 0.09.The subjective deblurring effect is better,and the recovered infrared images have clear edge contours and detail information.

关键词

生成对抗网络/密集残差块/红外图像/去运动模糊

Key words

generative adversarial network/residual-in-residual dense block/infrared image/motion deblurring

分类

计算机与自动化

引用本文复制引用

李立,易诗,刘茜,程兴豪,王铖..基于密集残差生成对抗网络的红外图像去模糊[J].红外技术,2024,46(6):663-671,9.

基金项目

四川省自然科学基金面上项目(24NSFSC1481),成都理工大学高等教育人才培养质量和教学改革项目(JG2130216). (24NSFSC1481)

红外技术

OA北大核心CSTPCD

1001-8891

访问量0
|
下载量0
段落导航相关论文