| 注册
首页|期刊导航|计算机与数字工程|基于AGPF的目标定位精度改善方法

基于AGPF的目标定位精度改善方法

蔡明 李国华 季茜 李培德

计算机与数字工程2024,Vol.52Issue(3):841-845,891,6.
计算机与数字工程2024,Vol.52Issue(3):841-845,891,6.DOI:10.3969/j.issn.1672-9722.2024.03.035

基于AGPF的目标定位精度改善方法

Target Positioning Accuracy Improvement Method Based on Adaptive Genetic Algorithms Particle Filter

蔡明 1李国华 2季茜 3李培德3

作者信息

  • 1. 湖北省气象信息与技术保障中心 武汉 430074||暴雨监测预警湖北重点实验室 武汉 430074
  • 2. 黄冈市气象局 黄冈 438000
  • 3. 湖北省气象信息与技术保障中心 武汉 430074
  • 折叠

摘要

Abstract

In order to solve the problem that traditional genetic algorithm particle filter is easy to fall into local optimization due to constant genetic operation parameters,an adaptive method is introduced into genetic algorithm particle filter,and an adap-tive genetic algorithm particle filter is proposed.The principle of dominant inheritance changes the probability of crossover and muta-tion with the change of particle fitness,so as to retain the dominant particles as much as possible while generating new dominant par-ticles more effectively,jumping out of local optimum.The adaptive genetic algorithm particle filter is applied to the established dy-namic state space model,compared with the performance of the genetic algorithm particle filter by simulation.The results show that the introduction of adaptive method can increase the effective particle number of the algorithm,effectively solve the problem of pre-mature algorithm and improve the filtering accuracy,which is very effective for improving the accuracy of dynamic target position-ing.

关键词

动态状态空间模型/自适应/目标定位/遗传算法/粒子滤波

Key words

dynamic state space model/adaptive/target positioning/genetic algorithm/particle filter

分类

生物科学

引用本文复制引用

蔡明,李国华,季茜,李培德..基于AGPF的目标定位精度改善方法[J].计算机与数字工程,2024,52(3):841-845,891,6.

基金项目

湖北省气象局重点科研项目(编号:2022Z04)资助. (编号:2022Z04)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文