|国家科技期刊平台
首页|期刊导航|计算机工程与科学|区块链环境中的隐私保护推荐算法研究

区块链环境中的隐私保护推荐算法研究OA北大核心CSTPCD

A privacy protection recommendation algorithm in block chain environment

中文摘要英文摘要

针对区块链环境中推荐算法难以抵御恶意攻击和推荐效果不佳的问题,一方面,提出了基于整数向量的快速同态加密算法,对用户数据进行隐私保护,其安全性由LWE问题保证;另一方面,基于E2LSH设计了一种高效的个性化推荐算法,该算法根据哈希桶编号进行密钥分发,从而使得同一哈希桶中的用户能进行同态加密运算并快速计算相似度.在区块链+IPFS的基础系统模型上,使用公用数据集与最新相关的隐私保护推荐算法进行了对比实验,实验结果表明,所提算法在安全性和隐私性得到保障的同时拥有理想的推荐效果和速度.

For the problem that recommendation algorithms in the blockchain environment are diffi-cult to resist malicious attacks and have poor recommendation results.On the one hand,a fast homo-morphic encryption algorithm based on integer vector is proposed to protect the privacy protection of us-er data,and its security is guaranteed by the LWE problem.On the other hand,an efficient recommen-dation algorithm is designed based on E2LSH,which distributes the key according to the hash bucket number,so that users under the same hash bucket can perform homomorphic encryption operations and quickly calculate the similarity.On the basic system model of blockchain+IPFS,a comparison experi-ment with the latest relevant privacy-preserving recommendation algorithms is conducted using public datasets.The results show that the algorithms in this paper have an ideal recommendation effect and speed while security and privacy are guaranteed.

赵文韬;官礼和;何建国;唐昊

重庆交通大学数学与统计学院,重庆 400074

计算机与自动化

区块链隐私保护局部敏感哈希同态加密

blockchainprivacy protectionlocality sensitive hashinghomomorphic encryption

《计算机工程与科学》 2024 (006)

1032-1040 / 9

国家自然科学基金(12271067);重庆市高校创新研究群体项目(CXQT21021);重庆市研究生联合培养基地建设项目(JDLHPYJD2021016)

10.3969/j.issn.1007-130X.2024.06.010

评论