| 注册
首页|期刊导航|农药学学报|基于机器学习的多类别气味模型研究

基于机器学习的多类别气味模型研究

靳彬艳 李秀珍 时薪媛 韩菲宇 张莉

农药学学报2024,Vol.26Issue(3):472-481,10.
农药学学报2024,Vol.26Issue(3):472-481,10.DOI:10.16801/j.issn.1008-7303.2024.0038

基于机器学习的多类别气味模型研究

Research on multi-category odor model based on machine learning

靳彬艳 1李秀珍 1时薪媛 1韩菲宇 1张莉1

作者信息

  • 1. 中国农业大学理学院应用化学系农药创新中心,北京 100193
  • 折叠

摘要

Abstract

Olfaction plays a key role in the perception of external chemical signals by organisms,and odor assessment is an important means for humans to understand the olfactory world of organisms.However,the diversity of odor descriptors caused by evaluator subjectivity presents a significant challenge to the prediction of molecular odor attributes using computational methods.Based on single-label data,this study utilizes six machine learning algorithms and soft voting model integration strategies to construct a multi-category odor attribute prediction model for five high-frequency odor categories.The Macro F1 score of the model on the test set and the external test set are all above 0.7,showing good predictive ability and generalization performance.The model also shows some ability to detect counter-intuitive structure-odor relationship,presenting a new possibility for the effective prediction of molecular odor attributes.Simultaneously,this study also predicted the possible odor categories of molecules with mosquito-trapping effect,providing vital clues for elucidating the relationship between mosquito behavior and odor preference.

关键词

嗅觉感知/机器学习/特征筛选/气味预测/蚊虫引诱剂

Key words

olfactory perception/machine learning/feature screening/odor prediction/mosquito attractants

分类

化学工程

引用本文复制引用

靳彬艳,李秀珍,时薪媛,韩菲宇,张莉..基于机器学习的多类别气味模型研究[J].农药学学报,2024,26(3):472-481,10.

基金项目

国家自然科学基金(22177132). Supported by the National Natural Science Foundation of China(No.22177132). (22177132)

农药学学报

OA北大核心CSTPCD

1008-7303

访问量0
|
下载量0
段落导航相关论文