| 注册
首页|期刊导航|软件导刊|UCBiG-Plugin:改进图神经网络协同过滤的通用插入式框架

UCBiG-Plugin:改进图神经网络协同过滤的通用插入式框架

潘箴烨 陈娅红

软件导刊2024,Vol.23Issue(6):1-8,8.
软件导刊2024,Vol.23Issue(6):1-8,8.DOI:10.11907/rjdk.231600

UCBiG-Plugin:改进图神经网络协同过滤的通用插入式框架

UCBiG-Plugin:A Generic Plugin Framework for Improved Collaborative Filtering of Graph Neural Networks

潘箴烨 1陈娅红2

作者信息

  • 1. 浙江理工大学 计算机科学与技术学院,浙江 杭州 310018
  • 2. 丽水学院 数学与计算机学院,浙江 丽水 323000
  • 折叠

摘要

Abstract

Graph neural networks have become a new technology for collaborative filtering.Although they can iteratively aggregate neighbor-hood information and naturally capture higher-order collaborative signals,most of the related work is carried out on the user item bipartite graph.However,the alternating connection between users and items in the bipartite graph results in a wide range of user interests,leading to the introduction of a large amount of noise during the propagation process.To this end,a new universal plug-in framework(UCBiG Plugin)is proposed to directly capture the group structures present in the item item co-occurrence graph,coarsen them into new nodes to construct a brand new user group node bipartite graph.Then,the strong proximity relationships between different items in these group structures are uti-lized to discover the potential high-order semantics of users.On three commonly used public datasets,two improved variants of the framework were applied for experimental evaluation,and it was found that the highest improved variants reached 9.51%and 8.89%,respectively.This proves that propagating collaboration signals on both user-item bipartite graphs and user-group node bipartite graphs can better capture rele-vant high-order connectivity information and be used for recommendation tasks.

关键词

图神经网络//协同过滤/推荐系统/图论

Key words

graph neural networks/clique/collaborative filtering/recommender systems/graph theory

分类

信息技术与安全科学

引用本文复制引用

潘箴烨,陈娅红..UCBiG-Plugin:改进图神经网络协同过滤的通用插入式框架[J].软件导刊,2024,23(6):1-8,8.

基金项目

国家自然科学基金面上项目(61772248) (61772248)

国家自然科学基金青年项目(11601208) (11601208)

浙江省自然科学基金项目(LY21A010002) (LY21A010002)

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文