|国家科技期刊平台
首页|期刊导航|水利信息化|结合双线性网络和注意力的蓝藻图像识别方法

结合双线性网络和注意力的蓝藻图像识别方法OA

Image recognition method for cyanobacteria utilizing bilinear networks and attention mechanisms

中文摘要英文摘要

针对实际工程环境中采集的蓝藻图像数量不均衡、复杂光照条件影响、蓝藻图像局部区域特征捕捉不全面等问题,提出一种结合双线性网络和注意力的蓝藻图像识别方法.首先构建蓝藻图像数据集,并使用图像增强算法对数据集进行优化,再使用双线性网络充分提取蓝藻图像特征信息,同时结合卷积块注意力机制,聚焦重要的局部特征,忽视无用信息,进一步提升对无蓝藻、颗粒状蓝藻、带状蓝藻和片状蓝藻等 4 类不同形态蓝藻图像的分类效果.在构建的 Algea-ultimate 蓝藻数据集上进行实验,结果表明:相比识别效果最好的经典网络模型 ResNet18,所提方法在识别准确率上提升 7.29%,识别精度有明显提升.识别方法可用于太湖流域水质监测和预警平台中,提供蓝藻图像自动识别功能,为实时监测水体蓝藻形态提供智能化解决方案.

Addressing issues such as the uneven quantity of cyanobacteria images collected in practical engineering environments,the influence of complex lighting conditions and the incomplete capture of local features in cyanobacteria images,a cyanobacteria image recognition method combining bilinear networks and attention mechanisms is proposed.Firstly,a cyanobacteria image dataset is developed and optimized using an image enhancement algorithm.Subsequently,bilinear networks are employed to comprehensively extract feature information from cyanobacteria images.Simultaneously,the convolutional block attention mechanism is integrated to emphasize important local features while disregarding irrelevant information.This approach aims to further improve the classification performance across four distinct types of cyanobacteria image including cyanobacteria-free,granular cyanobacteria,banded cyanobacteria and flake cyanobacteria.Experimental results conducted on the constructed Algea-ultimate cyanobacteria dataset demonstrate a notable enhancement in recognition accuracy compared to the classical ResNet18 model,with a 7.29%improvement.Furthermore,the proposed method has been implemented in the Taihu Lake Basin water quality monitoring and early warning platform to facilitate automated cyanobacteria image recognition,offering an intelligent solution for real-time monitoring of water body cyanobacteria morphology.

李水艳;朱玉东;蒋金磊;戚荣志;陈春雨

河海大学数学学院,江苏 南京 211100太湖流域水文水资源监测中心,江苏 无锡 214024华能澜沧江水电股份有限公司,云南 昆明 650214河海大学计算机与软件学院,江苏 南京 211100||水利部水利大数据重点实验室(河海大学),江苏 南京 211100河海大学计算机与软件学院,江苏 南京 211100

计算机与自动化

图像识别蓝藻双线性网络注意力

image recognitioncyanobacteriabilinear networksattention

《水利信息化》 2024 (003)

37-44 / 8

国家重点研发计划项目(2022YFC3005401);江苏省水利科技项目(2018057);云南省重点研发计划(202203AA080009);中国华能集团重点技术项目(HNZB2022-06-3-443)

10.19364/j.1674-9405.2024.03.007

评论