| 注册
首页|期刊导航|水利信息化|结合双线性网络和注意力的蓝藻图像识别方法

结合双线性网络和注意力的蓝藻图像识别方法

李水艳 朱玉东 蒋金磊 戚荣志 陈春雨

水利信息化Issue(3):37-44,8.
水利信息化Issue(3):37-44,8.DOI:10.19364/j.1674-9405.2024.03.007

结合双线性网络和注意力的蓝藻图像识别方法

Image recognition method for cyanobacteria utilizing bilinear networks and attention mechanisms

李水艳 1朱玉东 2蒋金磊 3戚荣志 4陈春雨5

作者信息

  • 1. 河海大学数学学院,江苏 南京 211100
  • 2. 太湖流域水文水资源监测中心,江苏 无锡 214024
  • 3. 华能澜沧江水电股份有限公司,云南 昆明 650214
  • 4. 河海大学计算机与软件学院,江苏 南京 211100||水利部水利大数据重点实验室(河海大学),江苏 南京 211100
  • 5. 河海大学计算机与软件学院,江苏 南京 211100
  • 折叠

摘要

Abstract

Addressing issues such as the uneven quantity of cyanobacteria images collected in practical engineering environments,the influence of complex lighting conditions and the incomplete capture of local features in cyanobacteria images,a cyanobacteria image recognition method combining bilinear networks and attention mechanisms is proposed.Firstly,a cyanobacteria image dataset is developed and optimized using an image enhancement algorithm.Subsequently,bilinear networks are employed to comprehensively extract feature information from cyanobacteria images.Simultaneously,the convolutional block attention mechanism is integrated to emphasize important local features while disregarding irrelevant information.This approach aims to further improve the classification performance across four distinct types of cyanobacteria image including cyanobacteria-free,granular cyanobacteria,banded cyanobacteria and flake cyanobacteria.Experimental results conducted on the constructed Algea-ultimate cyanobacteria dataset demonstrate a notable enhancement in recognition accuracy compared to the classical ResNet18 model,with a 7.29%improvement.Furthermore,the proposed method has been implemented in the Taihu Lake Basin water quality monitoring and early warning platform to facilitate automated cyanobacteria image recognition,offering an intelligent solution for real-time monitoring of water body cyanobacteria morphology.

关键词

图像识别/蓝藻/双线性网络/注意力

Key words

image recognition/cyanobacteria/bilinear networks/attention

分类

信息技术与安全科学

引用本文复制引用

李水艳,朱玉东,蒋金磊,戚荣志,陈春雨..结合双线性网络和注意力的蓝藻图像识别方法[J].水利信息化,2024,(3):37-44,8.

基金项目

国家重点研发计划项目(2022YFC3005401) (2022YFC3005401)

江苏省水利科技项目(2018057) (2018057)

云南省重点研发计划(202203AA080009) (202203AA080009)

中国华能集团重点技术项目(HNZB2022-06-3-443) (HNZB2022-06-3-443)

水利信息化

1674-9405

访问量0
|
下载量0
段落导航相关论文