| 注册
首页|期刊导航|水利水电技术(中英文)|基于Blending-Clustering集成学习的大坝变形预测模型

基于Blending-Clustering集成学习的大坝变形预测模型

冯子强 李登华 丁勇

水利水电技术(中英文)2024,Vol.55Issue(4):59-70,12.
水利水电技术(中英文)2024,Vol.55Issue(4):59-70,12.DOI:10.13928/j.cnki.wrahe.2024.04.006

基于Blending-Clustering集成学习的大坝变形预测模型

Dam deformation prediction model based on Blending-Clustering ensemble learning

冯子强 1李登华 2丁勇1

作者信息

  • 1. 南京理工大学理学院,江苏南京 210094
  • 2. 南京水利科学研究院,江苏南京 210029||水利部水库大坝安全重点实验室,江苏南京 210029
  • 折叠

摘要

Abstract

[Objective]Deformation is the most intuitive effect size to reflect the structural properties and morphological changes of the dam.It is an important means that constructing a scientific and reasonable deformation prediction model to ensure the safe and healthy operation of the dam.Aiming at the false alarm phenomenon caused by the low prediction accuracy and high false positive rate of traditional dam deformation prediction models,[Methods]a dam deformation prediction model based on Blending Blending-Clustering ensemble learning is constructed by selecting different prediction models and clustering algorithms.The core of the model is to improve the prediction accuracy of single prediction models by Blending.The stability of the model is improved by clustering optimization prediction values by Clustering.Taking the deformation monitoring data of a faced rockfill dam in Xin-jiang as an example,the prediction accuracy and stability of the proposed model are comprehensively evaluated by comparing the prediction performance of multiple models.[Results]The result show that root mean square error(RMSE)and normalization mean absolute percentage error(nMAPE)of the Blending-clustering model are significantly reduced by the integration of the pre-diction model and Clustering algorithm and the prediction accuracy of the model is significantly improved.The regression correla-tion coefficient(R2)is improved and the model had stronger fitting ability.The fluctuation range of the prediction and evaluation indexes on the multi-point deformation data set of a faced rockfill dam is smaller,and the generalization and stability of the model are effectively enhanced.[Conclusion]The result indicate that the Blending-Clustering prediction model can significantly improve the prediction accuracy,generalization and stability,and has certain application value for practical engineering.

关键词

大坝/变形/预测模型/Blending集成/Clustering集成/模型融合

Key words

dam/deformation/prediction model/Blending integration/Clustering integration/model combination

分类

水利科学

引用本文复制引用

冯子强,李登华,丁勇..基于Blending-Clustering集成学习的大坝变形预测模型[J].水利水电技术(中英文),2024,55(4):59-70,12.

基金项目

国家重点研发计划项目(2022YFC3005502) (2022YFC3005502)

国家自然科学基金项目(51979174) (51979174)

中央级公益性科研院所基本科研业务费专项资金项目(Y321004) (Y321004)

水利水电技术(中英文)

OA北大核心CSTPCD

1000-0860

访问量0
|
下载量0
段落导航相关论文