|国家科技期刊平台
首页|期刊导航|中国石油大学学报(自然科学版)|基于极端梯度提升算法的地震同相轴自动识别

基于极端梯度提升算法的地震同相轴自动识别OA北大核心CSTPCD

Automatic detection of seismic event based on eXtreme gradient boosting

中文摘要英文摘要

在常规地震同相轴识别方法基础上,通过引入极端梯度提升算法(XGBoost)智能化策略,并结合地震数据相邻道相似性特征,发展一种基于极端梯度提升算法的地震同相轴自动识别技术方法.在编程实现方法的基础上,通过简单层状模型和复杂Marmousi模型模拟的记录进行测试,验证方法的正确性.对含噪音数据和实际资料中的同相轴进行识别测试,同时进行单道对比定量分析以及不同信噪比情况下算法预测结果精度对比.结果表明:新方法对含噪数据和实际资料均具有较好的适应性;在低信噪比(-6.98 dB)情况下,同相轴的查准率仍可超过 90%.

This paper presents an automatic seismic event detection method based on eXtreme gradient boosting(XGBoost)by integrating intelligent strategies and leveraging the similarity characteristics of adjacent traces in seismic data.The pro-posed method is validated through programming and testing on both simple layered and complex Marmousi models.The detec-tion tests conducted on noisy data and the real data demonstrate the method̍s robustness and adaptability,even in low signal-to-noise ratio(SNR)conditions(-6.98 dB),achieving a seismic event detection precision of 90%.Additionally,single channel contrast quantitative analysis and comparison of algorithm prediction accuracy under various SNR conditions further confirm the method̍s feasibility and applicability.

黄建平;张若枫;高睿语;李亚林;段文胜;陈飞旭;郭廷超;潘成磊

中国石油大学(华东)地球科学与技术学院,山东青岛 266580中国石化石油物探技术研究院,江苏南京 211100中国石油塔里木油田公司,新疆库尔勒 841000中国石化江苏油田分公司物探研究院,江苏南京 210046

地质学

同相轴拾取机器学习特征拾取极端梯度提升算法

event pickingmachine learningfeature pickingeXtreme gradient boosting

《中国石油大学学报(自然科学版)》 2024 (003)

44-56 / 13

国家重点研发计划项目(2019YFC0605503);国家自然科学基金优秀青年科学基金项目(41922028);国家自然科学基金创新研究群体基金项目(41821002);山东省科研机构运费等专项(2021QNLM020001-5)

10.3969/j.issn.1673-5005.2024.03.005

评论