| 注册
首页|期刊导航|通信学报|ADAFT:SDN大规模流表的适应性深度聚合存储架构

ADAFT:SDN大规模流表的适应性深度聚合存储架构

熊兵 袁月 赵锦元 赵宝康 何施茗 张锦

通信学报2024,Vol.45Issue(5):226-238,13.
通信学报2024,Vol.45Issue(5):226-238,13.DOI:10.11959/j.issn.1000-436x.2024059

ADAFT:SDN大规模流表的适应性深度聚合存储架构

ADAFT:an storage architecture of large-scale SDN flow tables based on adaptive deep aggregations

熊兵 1袁月 1赵锦元 2赵宝康 3何施茗 1张锦1

作者信息

  • 1. 长沙理工大学计算机与通信工程学院,湖南 长沙 410114
  • 2. 长沙师范学院信息科学与工程学院,湖南 长沙 410199
  • 3. 国防科技大学计算机学院,湖南 长沙 410073
  • 折叠

摘要

Abstract

To solve the problem of resource shortage of ternary content addressable memory(TCAM)in the data plane of software defined network(SDN),a deep flow table aggregation method was proposed based on content entry trees,and a storage architecture of large-scale SDN flow tables named ADAFT was established.The architecture relaxed the Ham-ming distance requirement between ag-gregated flow entries,and a content entry tree was constructed to aggregate flow entries with different action sets,for significantly en-hancing the aggregation degree of flow tables.Then a dynamic limi-tation mechanism was designed for the height of content entry trees based on the awareness of TCAM load ratio,to mini-mize the lookup overhead of aggregated flow tables.Meanwhile,an adaptive selec-tion strategy of flow entry aggrega-tion was presented in the light of TCAM load ratio,to strike a balance between the aggregation degree and lookup over-head of flow tables.Experimental results indicate that the ADAFT architecture achieves much higher flow table com-pression ratios up to 65.74% than existing methods.

关键词

软件定义网络/SDN大规模流表/内容表项树/适应性深度聚合/TCAM装载率感知

Key words

software defined network/large-scale SDN flow table/content entry tree/adaptive deep aggregation/TCAM load ratio awareness

分类

信息技术与安全科学

引用本文复制引用

熊兵,袁月,赵锦元,赵宝康,何施茗,张锦..ADAFT:SDN大规模流表的适应性深度聚合存储架构[J].通信学报,2024,45(5):226-238,13.

基金项目

国家自然科学基金资助项目(No.U22B2005,No.61972412,No.62272062) (No.U22B2005,No.61972412,No.62272062)

国家重点研发计划基金资助项目(No.2022YFB2901204) (No.2022YFB2901204)

湖南省自然科学基金资助项目(No.2023JJ30053,No.2021JJ30456) (No.2023JJ30053,No.2021JJ30456)

湖南省教育厅基金资助项目(No.22A0232,No.23A0735,No.22B0300) (No.22A0232,No.23A0735,No.22B0300)

湖南省研究生科研创新基金资助项目(No.CX20230913) The National Natural Science Foundation of China(No.U22B2005,No.61972412,No.62272062),The National Key Research and Development Program of China(No.2022YFB2901204),The Natural Science Foundation of Hunan Province(No.2023JJ30053,No.2021JJ30456),Scientific Research Fund of Hunan Provincial Education Department(No.22A0232,No.23A0735,No.22B0300),The Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20230913) (No.CX20230913)

通信学报

OA北大核心CSTPCD

1000-436X

访问量0
|
下载量0
段落导航相关论文