|国家科技期刊平台
首页|期刊导航|现代情报|应对过滤气泡:算法策展对用户信息消费行为选择性和态度极端化的影响

应对过滤气泡:算法策展对用户信息消费行为选择性和态度极端化的影响OA北大核心CHSSCDCSSCICSTPCD

Breaking the Filter Bubbles:The Effect of Algorithm Curation on Selectivity of Information Consumption and Attitude Extremity

中文摘要英文摘要

[目的/意义]"过滤气泡"是个性化推荐算法仅向用户推荐他们所认同、感兴趣的信息而造成的不利结果,体现为信息消费行为的选择性及个体态度的极端化.本研究旨在探索不同信息排序方式对于过滤气泡的干预效果.[方法/过程]共招募 38 位参与者访问模拟新闻推荐系统,并将其划分到不同信息排序方式的组别中,通过服务器日志观测参与者的新闻点击与阅读行为,使用量表测量其态度极端性变化情况.[结果/结论]信息排序方式不会影响用户的新闻标题点击行为的选择性,但会影响其新闻文章阅读行为的选择性及态度极端性变化:相较于基于偏好的排序方式,基于时间与基于质量的排序方式均会显著降低用户阅读行为的选择性,同时基于质量的排序方式还显著降低了用户的态度极端性.本研究不仅为过滤气泡研究提供了新的研究视角与有效的方法论,还为个性化推荐算法设计提供了实践启示.

[Purpose/Significance]There is a growing concern that algorithms have led to"filter bubbles"in which people only receive content tailored to their existing inclinations,as opposed to being exposed to diverse information.And the filter bubble is reflected in the selectivity of information consumption and attitude extremity.This study aims to explore the intervention effects of different approaches of prioritization in recommender systems on filter bubbles.[Method/Process]This study recruited 38 participants to visit the mock personalized news recommender system.And they were assigned to groups with different prioritization approaches.This study observed and recorded each participant's clicking behavior and reading behavior through server logs.Additionally,the paper measured the changes in participants'attitude extremity using a scale.[Result/Conclusion]The results show that the approaches of prioritization did not affect the selectivity of users'clicking behavior,but affect the selectivity of users'browsing behavior and change of attitude extremity.Specifically,both time-based ranking and quality-based ranking significantly reduce the selectivity of users'reading behaviors when compared to preference-based ranking.And quality-based ranking also weakens the extremity of users'attitudes to a greater extent.This study not only provides a new research perspective and effective methodology for filter bubble-related research,but al-so provides practical insights for recommendation systems algorithm design.

姜婷婷;吕妍;傅诗婷

武汉大学信息管理学院,湖北 武汉 430072||武汉大学信息资源研究中心,湖北 武汉 430072武汉大学信息管理学院,湖北 武汉 430072

过滤气泡算法策展排序方式行为选择性态度极端性

filter bubblesalgorithm curationprioritizationselectivity of information behaviorattitude extremity

《现代情报》 2024 (007)

22-33 / 12

国家社会科学基金重大项目"人本人工智能驱动的信息服务体系重构与应用研究"(项目编号:22&ZD325).

10.3969/j.issn.1008-0821.2024.07.003

评论