| 注册
首页|期刊导航|现代电力|基于二阶聚类和鲁棒性随机分割森林算法的低压台区线损异常辨识

基于二阶聚类和鲁棒性随机分割森林算法的低压台区线损异常辨识

刘雄 夏向阳 刘定国 胡军华 黄瑞 李泽文 史子轶

现代电力2024,Vol.41Issue(3):441-447,7.
现代电力2024,Vol.41Issue(3):441-447,7.DOI:10.19725/j.cnki.1007-2322.2022.0269

基于二阶聚类和鲁棒性随机分割森林算法的低压台区线损异常辨识

Line Loss Anomaly Identification of Low-voltage-station Based on Second-order Clustering and Robust Random Cut Forest Algorithm

刘雄 1夏向阳 1刘定国 2胡军华 3黄瑞 3李泽文 4史子轶1

作者信息

  • 1. 长沙理工大学电气与信息工程学院,湖南省长沙市 410114
  • 2. 国网湖南省电力有限公司,湖南省长沙市 410082
  • 3. 国网湖南省电力有限公司供电服务中心(计量中心),湖南省长沙市 410116
  • 4. 华东交通大学电气与自动化工程学院,江西省南昌市 330000
  • 折叠

摘要

Abstract

To accurately identify the abnormal line loss in the substation area and ensure the economic and stable operation of the distribution network,in allusion to the abnormal line loss in the substation area,based on second-order clustering and ro-bust random cut forest(abbr.RRCF)algorithm a method to de-tect the abnormal line loss in the substation area was proposed.Firstly,by means of second order clustering the different oper-ating conditions of the substation area were clustered and the line loss nodes under the same operating conditions were merged.Secondly,the nodal line loss data of all kinds of oper-ating conditions was led into RRCF algorithm to conduct the analysis.By means of deleting and inserting sample nodes and computing the complexity of the evaluation model after insert-ing nodes,the score values of abnormal line loss nodes could be obtained,and further the nodes with abnormal line loss could be found out.Finally,the effectiveness and accuracy of the pro-posed method are verified by related examples.

关键词

低压台区/二阶聚类/RRCF算法/线损异常

Key words

low-voltage substation area/regional second-order clustering/RRCF algorithm/abnormal line loss

引用本文复制引用

刘雄,夏向阳,刘定国,胡军华,黄瑞,李泽文,史子轶..基于二阶聚类和鲁棒性随机分割森林算法的低压台区线损异常辨识[J].现代电力,2024,41(3):441-447,7.

基金项目

国家自然科学基金项目(51977014).Project Supported by National Natural Science Foundation of China(51977014). (51977014)

现代电力

OA北大核心CSTPCD

1007-2322

访问量0
|
下载量0
段落导航相关论文