| 注册
首页|期刊导航|现代电力|基于多元模态分解与多目标算法优化的深度集成学习模型的超短期风电功率预测

基于多元模态分解与多目标算法优化的深度集成学习模型的超短期风电功率预测

朱梓彬 孟安波 欧祖宏 王陈恩 张铮 陈黍 梁濡铎

现代电力2024,Vol.41Issue(3):458-469,12.
现代电力2024,Vol.41Issue(3):458-469,12.DOI:10.19725/j.cnki.1007-2322.2022.0318

基于多元模态分解与多目标算法优化的深度集成学习模型的超短期风电功率预测

Ultra-short-term Wind Power Prediction Based on Deep Ensemble Learning Model Using Multivariate Mode Decomposition and Multi-objective Optimization

朱梓彬 1孟安波 1欧祖宏 2王陈恩 1张铮 1陈黍 1梁濡铎1

作者信息

  • 1. 广东工业大学自动化学院,广东省广州市 510006
  • 2. 广东电网有限责任公司肇庆供电局,广东省肇庆市 526060
  • 折叠

摘要

Abstract

To address the issue of ultra-short-term wind power prediction,a novel prediction model is proposed based on mul-tivariate variational mode decomposition(MVMD),multi-ob-jective crisscross optimization(MOCSO)algorithm and blend-ing ensemble learning.In the data processing stage,to maintain synchronization correlation and ensure matching of intrinsic mode fuctions(IMFs)number and frequency,the MVMD method is used to decompose the multi-channel original data synchronously.Considering the insufficient comprehensive-ness,inaccuracy,and low robustness of the single machine learning model,a blending ensemble learning model is pro-posed to combine multiple deep learning networks using MOC-SO dynamic weighting.The prediction results of RNN,CNN and LSTM are dynamically weighted,integrated,and then op-timized by MOCSO to improve the prediction accuracy and sta-bility.Experimental results show that the proposed model is not only effective,but also significantly superior to other predic-tion models.

关键词

风电功率预测/多元变分模态分解/多目标纵横交叉优化/Blending集成学习

Key words

wind power prediction/multivariate variational mode decomposition(MVMD)/multi-objective crisscross op-timization(MOCSO)/Blending ensemble learning

分类

信息技术与安全科学

引用本文复制引用

朱梓彬,孟安波,欧祖宏,王陈恩,张铮,陈黍,梁濡铎..基于多元模态分解与多目标算法优化的深度集成学习模型的超短期风电功率预测[J].现代电力,2024,41(3):458-469,12.

基金项目

国家自然科学基金项目(61876040).Project Supported by National Natural Science Foundation of China(61876040). (61876040)

现代电力

OA北大核心CSTPCD

1007-2322

访问量0
|
下载量0
段落导航相关论文