|国家科技期刊平台
首页|期刊导航|移动通信|基于端边云协同体系的联邦学习模型训练与优化

基于端边云协同体系的联邦学习模型训练与优化OA

Training and Optimization of Federated Learning Models Based on End Edge Cloud Collaborative System

中文摘要英文摘要

针对联邦学习训练模型容易受到数据属性影响的问题,提出基于端边云协同体系的联邦学习模型训练与优化方法,该方法引入可信度和动态学习率实现全局模型参数的自学习和自优化.实验表明,与其他算法相比,所提算法充分考虑边缘端的可信度,可防止由于数据分布或者质量问题所导致全局模型参数快速变化所导致准确率快速下降的问题;另外,由于引入了动态学习率,全局模型在聚合时可依据本地模型的误差进行学习率的自适应调整,在一定程度上实现全局参数更新速度和算法稳定度的平衡.

In response to the problem that federated learning training models are easily affected by data attributes,a federated learning model training and optimization method based on end-edge-cloud collaborative system is proposed.This method introduces credibility and dynamic learning rate to achieve self-learning and self-optimization of global model parameters.Experiments have shown that compared with other algorithms,the proposed algorithm fully considers the credibility of the edge,which can prevent the rapid decrease in accuracy caused by rapid changes in global model parameters due to data distribution or quality issues.In addition,due to the introduction of dynamic learning rate,the global model can adaptively adjust the learning rate based on the error of the local model during aggregation,which to a certain extent balances the global parameter update speed and algorithm stability.

陈少权;杜翠凤;张振

中电科普天科技股份有限公司,广东广州 510310

电子信息工程

端边云协同模型聚合联邦学习可信度动态学习率

end-edge-cloud collaborationmodel aggregationfederated learningcredibilitydynamic learning rate

《移动通信》 2024 (006)

91-96 / 6

广东省海洋经济发展(海洋六大产业)专项资金项目"面向海洋产业的探测通信一体化立体海洋无线网络系统研究"(粤自然资合[2023]24号)

10.3969/j.issn.1006-1010.20231227-0001

评论