| 注册
首页|期刊导航|移动通信|基于端边云协同体系的联邦学习模型训练与优化

基于端边云协同体系的联邦学习模型训练与优化

陈少权 杜翠凤 张振

移动通信2024,Vol.48Issue(6):91-96,6.
移动通信2024,Vol.48Issue(6):91-96,6.DOI:10.3969/j.issn.1006-1010.20231227-0001

基于端边云协同体系的联邦学习模型训练与优化

Training and Optimization of Federated Learning Models Based on End Edge Cloud Collaborative System

陈少权 1杜翠凤 1张振1

作者信息

  • 1. 中电科普天科技股份有限公司,广东广州 510310
  • 折叠

摘要

Abstract

In response to the problem that federated learning training models are easily affected by data attributes,a federated learning model training and optimization method based on end-edge-cloud collaborative system is proposed.This method introduces credibility and dynamic learning rate to achieve self-learning and self-optimization of global model parameters.Experiments have shown that compared with other algorithms,the proposed algorithm fully considers the credibility of the edge,which can prevent the rapid decrease in accuracy caused by rapid changes in global model parameters due to data distribution or quality issues.In addition,due to the introduction of dynamic learning rate,the global model can adaptively adjust the learning rate based on the error of the local model during aggregation,which to a certain extent balances the global parameter update speed and algorithm stability.

关键词

端边云协同/模型聚合/联邦学习/可信度/动态学习率

Key words

end-edge-cloud collaboration/model aggregation/federated learning/credibility/dynamic learning rate

分类

电子信息工程

引用本文复制引用

陈少权,杜翠凤,张振..基于端边云协同体系的联邦学习模型训练与优化[J].移动通信,2024,48(6):91-96,6.

基金项目

广东省海洋经济发展(海洋六大产业)专项资金项目"面向海洋产业的探测通信一体化立体海洋无线网络系统研究"(粤自然资合[2023]24号) (海洋六大产业)

移动通信

1006-1010

访问量0
|
下载量0
段落导航相关论文