|国家科技期刊平台
首页|期刊导航|中国电机工程学报|基于μ综合理论与遗传算法的并网逆变器鲁棒控制方法

基于μ综合理论与遗传算法的并网逆变器鲁棒控制方法OA北大核心CSTPCD

Robust Control Method of Grid-connected Inverter Based on μ-Synthesis Theory and Genetic Algorithm

中文摘要英文摘要

在并网逆变器的实际运行中,电网阻抗和时间延迟系数的不确定性会影响到系统的稳定运行.为提高该含参数不确定性的系统的鲁棒性,提出采用 μ综合理论来对系统进行鲁棒控制,通过对参数不确定性及其他性能约束的加权函数进行设计,从而使系统能够满足鲁棒稳定性与鲁棒性能要求.针对 μ综合法设计的控制器阶数过高,难以工程实现的问题,可将其与遗传算法结合来对定结构控制器进行优化.首先采用 μ综合理论搭建系统的摄动模型,然后用遗传算法对系统控制器的参数进行设计,使摄动系统能够实现结构化奇异值最小化的目标,从而达到对参数变化具有更强的鲁棒适应性的要求.实验结果表明,用该方法设计的控制器比用传统方法设计的控制器具有更好的鲁棒性.

In the actual operation of a grid-connected inverter,the uncertainty of grid impedance and time delay coefficient will affect the stable operation of the system.In order to improve the robustness of the system with parameter uncertainty,μ-synthesis theory is proposed to carry out the robust control of the system.By designing the weighting functions of parameter uncertainties and other performance constraints,the system can meet the requirements of robust stability and robust performance.Aiming at the problem that the order of the controller designed by μ-synthesis theory is too high to be realized in engineering,it can be combined with genetic algorithm to optimize the fixed-structure controller.The perturbation model of the system is built based on μ-synthesis theory firstly,and then the parameters of the system controller are designed using genetic algorithm,so that the perturbation system can achieve the goal of minimizing the structure singular value,thus achieving the requirements of stronger robustness and adaptability to parameter changes.The experimental results show that the controller designed by this method has better robustness than the controller designed by the traditional method.

张雨;方天治;刘昊;金启源;章益凡

南京航空航天大学自动化学院,江苏省 南京市 211106

动力与电气工程

并网逆变器μ综合理论遗传算法鲁棒控制

grid-connected inverterμ-synthesis theorygenetic algorithmrobust control

《中国电机工程学报》 2024 (012)

4891-4903,中插24 / 14

国家自然科学基金项目(52077102);江苏省自然科学基金项目(BK20201299). Project Supported by National Natural Science Foundation of China(52077102);Natural Science Foundation of Jiangsu Province(BK20201299).

10.13334/j.0258-8013.pcsee.230253

评论