| 注册
首页|期刊导航|中国电机工程学报|基于物理信息神经网络的同步发电机建模

基于物理信息神经网络的同步发电机建模

杨珂 王鑫 凌佳杰 耿光超 江全元

中国电机工程学报2024,Vol.44Issue(12):4924-4932,中插27,10.
中国电机工程学报2024,Vol.44Issue(12):4924-4932,中插27,10.DOI:10.13334/j.0258-8013.pcsee.230305

基于物理信息神经网络的同步发电机建模

Modeling of Synchronous Generator Based on Physics-informed Neural Network

杨珂 1王鑫 1凌佳杰 1耿光超 1江全元1

作者信息

  • 1. 浙江大学电气工程学院,浙江省 杭州市 310027
  • 折叠

摘要

Abstract

The synchronous generator(SG)models constructed based on physical principles have limitations in accurately capturing the nonlinear characteristics of the SG.Hence,the power system is continuously researching and adopting new SG models to enhance their accuracy.Data-driven models have stronger nonlinear expression capabilities,but they face challenges in practical applications for SG modeling,such as weak model generalization and high data requirements.To overcome these problems,this paper proposes a physics-informed neural network(PINN)model for SG,employing recurrent neural network as the fundamental model architecture.The modelling of the PINN is guided by the physical mechanism of SG and based on the principles of neural network modeling.The PINN can express the magnetic saturation characteristic of SG with high accuracy and has strong generalization ability.It can achieve higher fitting accuracy for SG models of various orders with small-scale data and can be applied to existing electromechanical transient simulation algorithms.

关键词

物理信息神经网络/数据驱动/同步发电机/磁饱和效应

Key words

physics-informed neural network/data-driven/synchronous generator/magnetic saturation effect

分类

信息技术与安全科学

引用本文复制引用

杨珂,王鑫,凌佳杰,耿光超,江全元..基于物理信息神经网络的同步发电机建模[J].中国电机工程学报,2024,44(12):4924-4932,中插27,10.

基金项目

国家自然科学基金项目(52177120) (52177120)

南方电网数字电网集团有限公司科技项目(670000KK52210032). Project Supported by National Natural Science Foundation of China(52177120) (670000KK52210032)

Research Project of China Southern Power Grid Digital Power Grid Group Co.,Ltd.(6700KK52210032). (6700KK52210032)

中国电机工程学报

OA北大核心CSTPCD

0258-8013

访问量0
|
下载量0
段落导航相关论文