基于RFE-LGB算法的上市公司财务造假分析和预测OA
Analysis and Prediction of Financial Fraud in Listed Companies Based on RFE-LGB Algorithm
针对上市公司财务造假预测问题,采用结合了LightGBM与递归特征消除法(RFE)的方法进行数据建模.LightGBM以其超参数量少、强大的稳健性及对不平衡数据的高敏感性等特点著称.RFE作为一种封装式特征选择方法,能高度匹配所用预测模型,并通过设定特征子集评价函数作为停止条件,自动确定最优特征数量,这在特征选择领域具有较大优势.此外,选用平衡精度(BAcc)作为模型预测性能的评估指标,并通过调整LightGBM的分类权重参数来解决样本不平衡的问题.在 5 个不同行业财务数据集上的实验结果表明,所提出的RFE-LGB模型在上市公司财务造假预测任务中表现出良好的平衡性、稳健性和泛化性.该模型能有效识别与财务造假相关的关键指标,且仅使用较少的核心特征即可达到较高的预测精度.
To address the issue of financial fraud prediction in listed companies,a method combining LightGBM and Recursive Feature Elimination(RFE)is adopted for data modeling.LightGBM is known for its low number of hyper parameter,strong robustness,and high sensitivity to imbalanced data.RFE,as an encapsulated feature selection method,can highly match the prediction model used and automatically determine the optimal number of features by setting a feature subset evaluation function as a stopping condition,which has significant advantages in the field of feature selection.In addition,the balanced accuracy(BAcc)is selected as the evaluation index for the predictive performance of the model,and the problem of sample imbalance is solved by adjusting the classification weight parameters of LightGBM.The experimental results on five different industry financial datasets show that the proposed RFE-LGB model exhibits good balance,robustness,and generalization in predicting financial fraud in listed companies.This model can effectively identify key indicators related to financial fraud,and can achieve high prediction accuracy with only a few core features.
陈梦媛;南嘉琦;王静赛
河南财政金融学院 金融学院,河南 郑州 450046
计算机与自动化
上市公司财务造假LightGBM递归特征消除特征选择
listed companyfinancial fraudLightGBMrecursive feature eliminationfeature selection
《现代信息科技》 2024 (011)
145-152 / 8
河南财政金融学院2023年大学生创新训练计划项目(202311652029)
评论