|国家科技期刊平台
首页|期刊导航|北京测绘|基于改进DeepLabV3+的遥感图像分割模型

基于改进DeepLabV3+的遥感图像分割模型OA

Remote sensing image segmentation model based on improved DeepLabV3+

中文摘要英文摘要

针对经典语义分割算法对遥感图像分割精度较低、参数量大等问题,提出一种轻量化网络与注意力机制相结合的改进深度实验室库版本3(DeepLabV3)+遥感图像语义分割模型.首先,使用移动网络版本3(MobileNetV3)轻量化模型作为DeepLabV3+的特征提取网络,可有效降低整个模型的参数量;其次,对DeepLabV3+模型解码阶段添加有效通 道注意力机制,增强模型对不同通道的特征拟合能力.实验表明:本文所改进DeepLabV3+模型相较原模型,参数量降低3.6倍,平均交并比提高3.5%.

In view of problems such as low precision and a large number of parameters in remote sensing image segmentation caused by classical semantic segmentation algorithms,an improved DeepLabV3+-based semantic segmentation model of remote sensing images combining lightweight network and attention mechanism was proposed.Firstly,the MobileNetV3 lightweight model was used as the feature extraction network of DeepLabV3+,which could effectively reduce the number of parameters in the whole model.Secondly,an effective channel attention mechanism was added to the DeepLabV3+model in the decoding stage,so as to increase the model's ability to fit different channel features.The experiments show that compared with that of the original model,the number of parameters of the improved DeepLabV3+model in this paper is reduced by 3.6 times,and the average intersection-over-union is increased by 3.5%.

俞淑洋;杨利亚;杨静;殷非凡

湖州市测绘院,浙江 湖州 313000中国水利水电第八工程局有限公司,湖南 长沙 410000湖州市空间规划编制研究中心,浙江 湖州 313000

测绘与仪器

遥感图像分割DeepLabV3+模型轻量化网络注意力机制模块

remote sensing image segmentationDeepLabV3+modellightweight networkattention mechanism module

《北京测绘》 2024 (005)

686-691 / 6

国家自然科学基金(42261074)

10.19580/j.cnki.1007-3000.2024.05.007

评论