| 注册
首页|期刊导航|北京测绘|基于改进DeepLabV3+的遥感图像分割模型

基于改进DeepLabV3+的遥感图像分割模型

俞淑洋 杨利亚 杨静 殷非凡

北京测绘2024,Vol.38Issue(5):686-691,6.
北京测绘2024,Vol.38Issue(5):686-691,6.DOI:10.19580/j.cnki.1007-3000.2024.05.007

基于改进DeepLabV3+的遥感图像分割模型

Remote sensing image segmentation model based on improved DeepLabV3+

俞淑洋 1杨利亚 1杨静 2殷非凡3

作者信息

  • 1. 湖州市测绘院,浙江 湖州 313000
  • 2. 中国水利水电第八工程局有限公司,湖南 长沙 410000
  • 3. 湖州市空间规划编制研究中心,浙江 湖州 313000
  • 折叠

摘要

Abstract

In view of problems such as low precision and a large number of parameters in remote sensing image segmentation caused by classical semantic segmentation algorithms,an improved DeepLabV3+-based semantic segmentation model of remote sensing images combining lightweight network and attention mechanism was proposed.Firstly,the MobileNetV3 lightweight model was used as the feature extraction network of DeepLabV3+,which could effectively reduce the number of parameters in the whole model.Secondly,an effective channel attention mechanism was added to the DeepLabV3+model in the decoding stage,so as to increase the model's ability to fit different channel features.The experiments show that compared with that of the original model,the number of parameters of the improved DeepLabV3+model in this paper is reduced by 3.6 times,and the average intersection-over-union is increased by 3.5%.

关键词

遥感图像分割/DeepLabV3+模型/轻量化网络/注意力机制模块

Key words

remote sensing image segmentation/DeepLabV3+model/lightweight network/attention mechanism module

分类

天文与地球科学

引用本文复制引用

俞淑洋,杨利亚,杨静,殷非凡..基于改进DeepLabV3+的遥感图像分割模型[J].北京测绘,2024,38(5):686-691,6.

基金项目

国家自然科学基金(42261074) (42261074)

北京测绘

1007-3000

访问量0
|
下载量0
段落导航相关论文