|国家科技期刊平台
首页|期刊导航|城市建筑|基于红外热像的车站混凝土结构损伤智能检测方法

基于红外热像的车站混凝土结构损伤智能检测方法OA

Intelligent Detection Method for Damage to Concrete Structures in Railway Stations Based on Infrared Thermal Imaging

中文摘要英文摘要

车站作为一种典型的混凝土建筑,受工艺和材料配比的限制,大多数混凝土结构均具有一定的内部缺陷.因此,为了保证车站人员的安全,研究提出了一种基于红外热像及掩膜循环卷积神经网络的混凝土结构内部损伤智能检测方法.实验结果显示,该方法对不同类型缺陷的检测精度最高为99.7%,最低为93.3%;IoU最高为98.4%,最低为91.5%.在缺陷尺寸量化中,预测尺寸与实际尺寸的比值均趋近于1,二者的相对误差最大为1.35%,最小为0.04%,平均相对误差为0.70%.在实际应用中,智能检测模型的平均精度均值、平均IoU和平均召回率分别为92.1%、90.2%和84.4%,相较于测试中有所下降,但仍保持在良好水平上.上述结果表明,基于红外热像及掩膜循环卷积神经网络的智能检测模型能有效实现混凝土内部损伤的准确检测,有效保障车站混凝土结构的性能.

As a typical concrete building,most concrete structures in stations have certain internal defects due to limitations in craftsmanship and material ratios.Therefore,in order to ensure the safety of station personnel,an intelligent detection method for internal damage in concrete based on infrared thermal imaging and mask cyclic convolutional neural network has been proposed.The experimental results show that the highest detection accuracy of this method for different types of defects is 99.7%,and the lowest is 93.3%.The highest intersection ratio is 98.4%,and the lowest is 91.5%.In defect size quantification,the ratio of predicted size to actual size approaches 1,with a maximum relative error of 1.35%and a minimum error of 0.04%,and an average relative error of 0.7%.In practical applications,the average accuracy,average IoU,and average recall of the intelligent detection model are 92.1%,90.2%,and 84.4%,respectively,which have decreased compared to testing,but still remain above a good level.The above results indicate that the intelligent detection model based on infrared thermal imaging and mask cyclic convolutional neural network can effectively achieve accurate detection of internal damage in concrete,effectively ensuring the performance of station concrete structures.

王静;毅力果奇;杨俊;谢辉

内蒙古建筑职业技术学院||路桥无损检测技能大师工作室成都升拓工程检测有限公司四川升拓检测技术股份有限公司

土木建筑

混凝土内部损伤红外热像Mask R-CNN无损检测

concreteinternal damageinfrared thermal imagingmask R-CNNnon-destructive testing

《城市建筑》 2024 (012)

1-4 / 4

内蒙古建筑职业技术学院科研平台项目"智慧交通无损检测技术创新研发平台"(20220724)

10.19892/j.cnki.csjz.2024.12.01

评论