| 注册
首页|期刊导航|电源技术|基于改进AFFRLS-AUKF的锂电池SOC估计

基于改进AFFRLS-AUKF的锂电池SOC估计

陈亮 卢玉斌 林正廉

电源技术2024,Vol.48Issue(6):1109-1115,7.
电源技术2024,Vol.48Issue(6):1109-1115,7.DOI:10.3969/j.issn.1002-087X.2024.06.020

基于改进AFFRLS-AUKF的锂电池SOC估计

SOC estimation of lithium battery based on improved AFFRLS-AUKF

陈亮 1卢玉斌 2林正廉1

作者信息

  • 1. 福州大学先进制造学院,福建福州 350108||中国科学院福建物质结构研究所泉州装备制造研究中心,福建泉州 362000
  • 2. 中国科学院福建物质结构研究所泉州装备制造研究中心,福建泉州 362000
  • 折叠

摘要

Abstract

The accurate estimation of the state of charge(SOC)of lithium batteries is one of the im-portant prerequisites for ensuring the safe and stable operation of battery management systems.In order to improve the accuracy of SOC estimation of lithium ion batteries,an SOC estimation method of lithium ion batteries combined improved adaptive forgetting factor least squares(AFFRLS)with adaptive unscented Kalman filter(AUKF)algorithm was proposed.The improved AFFRLS was used to identify the parameters of the established second-order RC equivalent circuit model,and the AUKF was used to estimate the SOC of lithium-ion batteries.The average absolute error of the joint estimation is 0.44%and the root mean square error is 0.61%through the verification of DST and UDDS conditions,which shows that the improved AFFRLS-AUKF method improves the accuracy and robustness of parameter identification and battery SOC estimation.

关键词

锂离子电池/荷电状态/自适应遗忘因子/无迹卡尔曼滤波

Key words

lithium-ion battery/state of charge/adaptive forgetting factor/unscented Kalman filtering

分类

信息技术与安全科学

引用本文复制引用

陈亮,卢玉斌,林正廉..基于改进AFFRLS-AUKF的锂电池SOC估计[J].电源技术,2024,48(6):1109-1115,7.

基金项目

国家自然科学基金青年项目(NO.42202302) (NO.42202302)

电源技术

OA北大核心CSTPCD

1002-087X

访问量3
|
下载量0
段落导航相关论文