基于改进AFFRLS-AUKF的锂电池SOC估计OA北大核心CSTPCD
SOC estimation of lithium battery based on improved AFFRLS-AUKF
准确估计锂电池荷电状态(SOC)是保障电池管理系统安全稳定运行的重要前提之一.为了提高锂离子电池SOC估计精度,提出一种改进自适应遗忘因子最小二乘法(AFFRLS)与自适应无迹卡尔曼滤波算法(AUKF)联合估计锂离子电池SOC的估计方法.利用改进AFFRLS对已建立的二阶RC等效电路模型进行参数辨识,再结合AUKF估计锂离子电池SOC.通过动态应力测试(DST)工况和城市道路循环(UDDS)工况验证得到联合估计方法的平均绝对误差为 0.44%,均方根误差为0.61%,表明改进的AFFRLS-AUKF方法可提高参数辨识及电池SOC估计的准确性和鲁棒性.
The accurate estimation of the state of charge(SOC)of lithium batteries is one of the im-portant prerequisites for ensuring the safe and stable operation of battery management systems.In order to improve the accuracy of SOC estimation of lithium ion batteries,an SOC estimation method of lithium ion batteries combined improved adaptive forgetting factor least squares(AFFRLS)with adaptive unscented Kalman filter(AUKF)algorithm was proposed.The improved AFFRLS was used to identify the parameters of the established second-order RC equivalent circuit model,and the AUKF was used to estimate the SOC of lithium-ion batteries.The average absolute error of the joint estimation is 0.44%and the root mean square error is 0.61%through the verification of DST and UDDS conditions,which shows that the improved AFFRLS-AUKF method improves the accuracy and robustness of parameter identification and battery SOC estimation.
陈亮;卢玉斌;林正廉
福州大学先进制造学院,福建福州 350108||中国科学院福建物质结构研究所泉州装备制造研究中心,福建泉州 362000中国科学院福建物质结构研究所泉州装备制造研究中心,福建泉州 362000
动力与电气工程
锂离子电池荷电状态自适应遗忘因子无迹卡尔曼滤波
lithium-ion batterystate of chargeadaptive forgetting factorunscented Kalman filtering
《电源技术》 2024 (006)
1109-1115 / 7
国家自然科学基金青年项目(NO.42202302)
评论