联合核预测和特征推理的渐进式壁画修复算法OA北大核心CSTPCD
Progressive Mural Inpainting Algorithm Based on Joint Kernel Prediction and Feature Reasoning
针对现存深度模型修复壁画时,未兼顾像素级特征与语义级特征,而导致纹理精细度欠缺、结构扭曲等问题,提出一种联合核预测和特征推理的渐进式壁画修复算法.首先,设计区域渐进模块,通过部分卷积实现壁画特征渐进式映射.然后,提出双分支修复模块,其中核预测卷积分支实现破损区域的像素级修复;而语义特征推理分支中引入门控可变形卷积,并结合语义一致性注意力机制实现特征推理,完成破损壁画的语义级修复.最后,将双分支修复结果融合输出,最大限度地减少重构误差,提升修复精度.通过对敦煌壁画进行数字化修复实验,结果表明所提方法修复后的壁画具备较好的结构纹理特征,在评价指标上优于比较算法.
Aiming at the existing depth model that fails to take into account both pixel-level features and semantic-level features at the same time when repairing nurals,resulting in problems such as lack of texture fineness and structural distortion,a progressive mural inpaining algorithm that combines kernel prediction and feature reasoning is proposed.Firstly,the regional progressive module is designed to realize the progressive mapping of mural features through partial convolution.Then,a dual-branch repair module is proposed,in which the kernel predicts the volume integral branch to realize the pixel-level repair of the damaged area.The semantic feature reasoning branch introduces gated deformable convolution and combines the semantic consistency attention mechanism to realize feature reasoning to complete the semantic-level repair of damaged murals.Finally,the two-branch repair results are fused into the output to minimize the reconstruction error and improve the repair accuracy.Through the digital restoration experiment of Dunhuang murals,the results show that the restored murals by the proposed method have better structural texture characteristics,which are better than the comparison algorithm in terms of evaluation indicators.
陈永;赵梦雪;杜婉君;陶美风
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070||甘肃省人工智能与图形图像处理工程研究中心,甘肃 兰州 730070兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
计算机与自动化
图像重构壁画修复核预测语义特征推理特征融合
image reconstructionmural inpaintingkernel predictingsemantic feature reasoningfeature fusion
《湖南大学学报(自然科学版)》 2024 (006)
1-9 / 9
国家自然科学基金资助项目(61963023),National Natural Science Foundation of China(61963023);教育部人文社会科学研究青年基金资助项目(19YJC760012),Humanities and Social Sciences Youth Foundation of Ministry of Education(19YJC760012);兰州交通大学基础研究拔尖人才项目(2022JC36),Lanzhou Jiaotong University Basic Top-Notch Personnel Project(2022JC36);兰州交通大学重点研发项目(ZDYF2304),Key Research and Development Project of Lanzhou Jiaotong University(ZDYF2304)
评论