| 注册
首页|期刊导航|湖南大学学报(自然科学版)|基于CT-GAN的半监督学习窃电检测方法研究

基于CT-GAN的半监督学习窃电检测方法研究

杨艺宁 张蓬鹤 夏睿 高云鹏 王飞 朗珍白桑

湖南大学学报(自然科学版)2024,Vol.51Issue(6):211-222,12.
湖南大学学报(自然科学版)2024,Vol.51Issue(6):211-222,12.DOI:10.16339/j.cnki.hdxbzkb.2024241

基于CT-GAN的半监督学习窃电检测方法研究

Research on Semi-supervised Learning Detection Method of Electricity Theft Based on CT-GAN

杨艺宁 1张蓬鹤 1夏睿 2高云鹏 2王飞 3朗珍白桑3

作者信息

  • 1. 中国电力科学研究院有限公司,北京 100192
  • 2. 湖南大学 电气与信息工程学院,湖南 长沙 410082
  • 3. 国网西藏电力有限公司,西藏 拉萨 850000
  • 折叠

摘要

Abstract

Aiming at the high cost and difficulty of obtaining labeled data for power grid companies,and the difficulty of training an effective electricity theft detection model with unlabeled data,this paper proposes a method based on CT-GAN(Co-training Generative Adversarial Networks)semi-supervised electricity theft detection method.Firstly,the principles and structures of generative adversarial networks and semi-supervised generative adversarial networks are explored.Secondly,it is proposed to replace the JS(Jensen-Shannon)divergence and KL(Kullback-Leibler)divergence distance with the Wasserstein distance to solve the problem of unstable model training and low quality of generated data caused by the gradient disappearance and mode collapse of the generative confrontation network problem,and built a multi-discriminator Co-training model to avoid the problem of high distribution error of a single discriminator.At the same time,it enhanced the ability of GAN to generate label sample data.By expanding the label sample data set,the model detection accuracy and generalization ability were improved.Finally,the accuracy and effectiveness of the method are verified using the Irish power grid dataset.

关键词

窃电检测/生成对抗网络/半监督学习/Wasserstein距离/判别器

Key words

electricity theft detection/generative adversarial network/semi-supervised learning/Wasserstein distance/discriminator

分类

信息技术与安全科学

引用本文复制引用

杨艺宁,张蓬鹤,夏睿,高云鹏,王飞,朗珍白桑..基于CT-GAN的半监督学习窃电检测方法研究[J].湖南大学学报(自然科学版),2024,51(6):211-222,12.

基金项目

中国电力科学研究院研究开发项目(JL8422-003),Research and Development Project of China Electric Power Research Institute(JL8422-003) (JL8422-003)

湖南大学学报(自然科学版)

OA北大核心CSTPCD

1674-2974

访问量0
|
下载量0
段落导航相关论文