| 注册
首页|期刊导航|计算机应用与软件|基于CNN和HOG的司机分心检测

基于CNN和HOG的司机分心检测

秦斌斌 钱江波 严迪群 董一鸿

计算机应用与软件2024,Vol.41Issue(6):115-122,8.
计算机应用与软件2024,Vol.41Issue(6):115-122,8.DOI:10.3969/j.issn.1000-386x.2024.06.017

基于CNN和HOG的司机分心检测

DRIVER DISTRACTION DETECTION BASED ON CNN AND HOG

秦斌斌 1钱江波 1严迪群 1董一鸿1

作者信息

  • 1. 宁波大学信息科学与工程学院 浙江宁波 315211
  • 折叠

摘要

Abstract

Aimed at that the existing CNN network model only pays attention to the output of the last layer of the network without fully utilizing the features of the middle layer,which always contains much useful information,a driver distraction detection model is proposed,which extracts the output features of the multi-stage middle network layer end-to-end and integrates with HOG features.The parameter number of our model was only 3.6M.We used L2 weight regularization,Dropout,and batch regularization to improve model performance.The network was verified by the two public datasets State Farm Distracted Driver Detection(SFD3)and AUC Distracted Driver(AUCD2).The accuracy of SDF3 is 99.78%,which is about 3 percentage points higher than those existing methods,and the number of network parameters is reduced by about 95%.The accuracy of AUCD2 is 95.15%,which is about 2 percentage points higher than those existing methods,the number of network parameters is reduced by about 60%.

关键词

分心检测/图像分类/HOG/CNN

Key words

Distraction detection/Image classification/HOG/CNN

分类

信息技术与安全科学

引用本文复制引用

秦斌斌,钱江波,严迪群,董一鸿..基于CNN和HOG的司机分心检测[J].计算机应用与软件,2024,41(6):115-122,8.

基金项目

宁波市自然科学基金项目(2019A610085) (2019A610085)

浙江省自然科学基金项目(LZ20F020001). (LZ20F020001)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文