| 注册
首页|期刊导航|计算机应用与软件|基于卷积神经网络的疲劳检测改进算法

基于卷积神经网络的疲劳检测改进算法

周先春 邹清宇 陆滇

计算机应用与软件2024,Vol.41Issue(6):156-160,168,6.
计算机应用与软件2024,Vol.41Issue(6):156-160,168,6.DOI:10.3969/j.issn.1000-386x.2024.06.023

基于卷积神经网络的疲劳检测改进算法

AN IMPROVED ALGORITHM FOR FATIGUE DETECTION BASED ON CNN

周先春 1邹清宇 2陆滇2

作者信息

  • 1. 南京信息工程大学电子与信息工程学院 江苏南京 210044||江苏省大气环境与装备技术协同创新中心 江苏南京 210044
  • 2. 南京信息工程大学电子与信息工程学院 江苏南京 210044
  • 折叠

摘要

Abstract

In order to solve the shortcomings of low accuracy or poor real-time performance of current fatigue detection algorithms,an improved convolution neural network fatigue detection algorithm is proposed.HOG detection algorithm combined with KCF tracking algorithm was used to detect and track the collected faces.The Dlib library was called to extract the key points of the face.A deformable convolution neural network was introduced to identify the extracted eye and mouth states.This algorithm was tested by CEW and YAWDD data set.The accuracy of fatigue detection reaches 94.36%.Experiments show that compared with the current fatigue detection algorithms,the proposed method can detect driver fatigue in real time with high accuracy.

关键词

人脸检测/Dlib/可变形卷积/状态识别/疲劳检测

Key words

Face detection/Dlib/Deformable convolution/State recognition/Fatigue detection

分类

信息技术与安全科学

引用本文复制引用

周先春,邹清宇,陆滇..基于卷积神经网络的疲劳检测改进算法[J].计算机应用与软件,2024,41(6):156-160,168,6.

基金项目

国家自然科学基金项目(11202106,61302188) (11202106,61302188)

江苏省大学生创新创业训练计划项目(202010300128P). (202010300128P)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文