| 注册
首页|期刊导航|计算机应用与软件|基于深度学习的眼周识别方法研究

基于深度学习的眼周识别方法研究

秦涛 王云龙 孙哲南 周琬婷

计算机应用与软件2024,Vol.41Issue(6):186-193,8.
计算机应用与软件2024,Vol.41Issue(6):186-193,8.DOI:10.3969/j.issn.1000-386x.2024.06.028

基于深度学习的眼周识别方法研究

PERIOCULAR RECOGNITION APPROACH BASED ON DEEP LEARNING

秦涛 1王云龙 2孙哲南 3周琬婷2

作者信息

  • 1. 湖南工业大学计算机学院 湖南株洲 412007
  • 2. 中国科学院自动化研究所模式识别国家重点实验室智能感知与计算研究中心 北京 100190
  • 3. 中国科学院自动化研究所模式识别国家重点实验室智能感知与计算研究中心 北京 100190||中国科学院大学人工智能学院 北京 100049
  • 折叠

摘要

Abstract

In order to improve the performance of periocular recognition,a new method based on deep convolutional neural networks referred to as PeriocularNet is proposed.PeriocularNet exploited a 16-layer convolutional neural network,integrated with a residual learning module,and adopted the ArcFace loss function.Data augmentation was introduced to avoid the over-fitting in training process.The experiments on UBIPr and UBIRIS.V2 datasets show that the equal error rate(EER)of the proposed approach achieve 1.9%and 7.9%respectively.which improves the periocular recognition performance compared to the related methods.In addition,in order to verify the effect of the eyebrow region feature on the performance of periocular recognition in the end-to-end approach,two periocular datasets,UBIPr-1 and UBIRIS-1,involving three eyebrow shapes were established.Experimental results show that the EER of images containing the eyebrow feature is lower than that of the eyebrow feature removed,which indicates the importance of eyebrow feature in periocular recognition.

关键词

生物特征识别/眼周识别/深度学习/卷积神经网络/眉毛区域

Key words

Biometric recognition/Periocular recognition/Deep learning/Convolutional neural network/Eyebrow area

分类

信息技术与安全科学

引用本文复制引用

秦涛,王云龙,孙哲南,周琬婷..基于深度学习的眼周识别方法研究[J].计算机应用与软件,2024,41(6):186-193,8.

基金项目

科技部国家重点研发计划项目(2017YFC0821602) (2017YFC0821602)

国家自然科学基金青年科学基金项目(62006225,62006227). (62006225,62006227)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文