| 注册
首页|期刊导航|计算技术与自动化|多传感器的BPNN和SVM多源异构数据融合算法

多传感器的BPNN和SVM多源异构数据融合算法

王晓琪 陈颖聪 谢敏敏 张嘉慧 蔡上

计算技术与自动化2024,Vol.43Issue(2):70-76,7.
计算技术与自动化2024,Vol.43Issue(2):70-76,7.DOI:10.16339/j.cnki.jsjsyzdh.202402012

多传感器的BPNN和SVM多源异构数据融合算法

Multi Sensor Heterogeneous Data Fusion Algorithm Based on BPNN and SVM

王晓琪 1陈颖聪 1谢敏敏 1张嘉慧 1蔡上1

作者信息

  • 1. 广东电网有限责任公司 梅州供电局,广东 梅州 514021
  • 折叠

摘要

Abstract

In the process of multi-sensor multi-source heterogeneous data fusion processing,a large number of redundant data and complex nonlinear separable space lead to high energy consumption.Therefore,a multi-source heterogeneous data fusion algorithm based on BP neural network and support vector machine is proposed.Based on the data relationship,the constraint conditions were established,and the BP neural network algorithm was used to establish the data cleaning model,and the activity degree of node variables was determined to optimize the data input.To set up data set and extract data fea-ture vector;Based on the support vector machine's strong generalization ability and convex optimization,the optimal classi-fication hyperplane of the features is obtained,and the optimal decision value of the nonlinear separable multi-source data set is obtained into the high-dimensional linear separable space.Experimental results show that this algorithm has low energy consumption,low delay and good fusion effect.

关键词

BP神经网络/支持向量机/多源异构数据/数据清洗/数据融合

Key words

BP neural network/support vector machine/multi source heterogeneous data/data cleaning/data fusion

分类

信息技术与安全科学

引用本文复制引用

王晓琪,陈颖聪,谢敏敏,张嘉慧,蔡上..多传感器的BPNN和SVM多源异构数据融合算法[J].计算技术与自动化,2024,43(2):70-76,7.

基金项目

国网新一代人工智能科技项目(2020AAA0103400) (2020AAA0103400)

计算技术与自动化

OACSTPCD

1003-6199

访问量0
|
下载量0
段落导航相关论文