| 注册
首页|期刊导航|计算机应用与软件|基于特征进化选择随机森林的MCI自动诊断

基于特征进化选择随机森林的MCI自动诊断

高峰 郑丽丽 顾进广

计算机应用与软件2024,Vol.41Issue(6):250-256,7.
计算机应用与软件2024,Vol.41Issue(6):250-256,7.DOI:10.3969/j.issn.1000-386x.2024.06.037

基于特征进化选择随机森林的MCI自动诊断

MCI AUTOMATIC DIAGNOSIS BASED ON FEATURE EVOLUTION AND RANDOM FOREST SELECTION

高峰 1郑丽丽 1顾进广1

作者信息

  • 1. 武汉科技大学计算机科学与技术学院 湖北武汉 430065||武汉科技大学大数据科学与工程研究院 湖北武汉 430065||湖北省智能信息处理与实时工业系统重点实验室 湖北武汉 430065||富媒体数字出版内容组织与知识服务重点实验室 湖北武汉 430065
  • 折叠

摘要

Abstract

In recent years,research on the condition of mind cognitive impairment(MCI),which is the normal and excessive stage of Alzheimer's disease,has attracted much attention.However,the current medical MCI manual diagnosis not only has relatively large limitations in the referenced features,but also relies on manual judgment,which is prone to subjective errors.Therefore,this paper proposes an automatic diagnosis method of MCI based on random forest,hoping to determine MCI efficiently and accurately through machine learning.At the same time,in order to obtain the optimal parameters of the random forest MCI diagnosis model more efficiently,genetic algorithm was combined.The results show that the accuracy of this method is about 5%higher than that of medical manual diagnosis,and the time taken by genetic algorithm is shortened by nearly 45 times compared with grid search on the problem of obtaining the optimal parameters of random forest.

关键词

MCI/随机森林/遗传算法/最优参数

Key words

MCI/Random forest/Genetic algorithm/Optimal parameters

分类

信息技术与安全科学

引用本文复制引用

高峰,郑丽丽,顾进广..基于特征进化选择随机森林的MCI自动诊断[J].计算机应用与软件,2024,41(6):250-256,7.

基金项目

国家自然科学基金项目(U1836118) (U1836118)

富媒体数字出版内容组织与知识服务重点实验室开放基金项目(ZD2020/09-01) (ZD2020/09-01)

教育部新一代信息技术创新项目(2018A03025). (2018A03025)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文