| 注册
首页|期刊导航|计算机应用与软件|改进FCOS算法的车辆检测方法研究

改进FCOS算法的车辆检测方法研究

杜昌皓 张智

计算机应用与软件2024,Vol.41Issue(6):257-262,281,7.
计算机应用与软件2024,Vol.41Issue(6):257-262,281,7.DOI:10.3969/j.issn.1000-386x.2024.06.038

改进FCOS算法的车辆检测方法研究

IMPROVED FCOS ALGORITHM FOR VEHICLE DETECTION

杜昌皓 1张智1

作者信息

  • 1. 武汉科技大学计算机科学与技术学院 湖北武汉 430065||武汉科技大学湖北省智能信息处理与实时工业系统重点实验室 湖北武汉 430065||武汉科技大学大数据科学与工程研究院 湖北武汉 430065
  • 折叠

摘要

Abstract

Aimed at the problems of high error rate and slow detection speed in vehicle detection,an improved fully convolutional one-stage object detection vehicle detection method is proposed.An intersection and union ratio loss function considering multiple geometric factors was introduced,which improved the phenomenon that it was difficult for high aspect ratio vehicles and parallel vehicles to regress accurately in the training process.Multiscale convolution was used to combine multi-dimensional features information,and the robustness of the algorithm to different scale detection was enhanced.According to the scene of vehicle detection,the regression scale was improved to improve the reasoning accuracy of the model.The experimental results show that this method can significantly improve the detection accuracy while maintaining the detection speed in vehicle detection tasks.

关键词

计算机视觉/车辆检测/全卷积网络/多尺度卷积

Key words

Computer vision/Vehicle detection/Fully convolutional network/Multiscale convolution

分类

信息技术与安全科学

引用本文复制引用

杜昌皓,张智..改进FCOS算法的车辆检测方法研究[J].计算机应用与软件,2024,41(6):257-262,281,7.

基金项目

国家自然科学基金项目(61673304). (61673304)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文