| 注册
首页|期刊导航|计算机应用与软件|基于动态特征选择的Android应用隐私风险自动化检测

基于动态特征选择的Android应用隐私风险自动化检测

高龙良 杜素果 杨金萍

计算机应用与软件2024,Vol.41Issue(6):312-319,8.
计算机应用与软件2024,Vol.41Issue(6):312-319,8.DOI:10.3969/j.issn.1000-386x.2024.06.045

基于动态特征选择的Android应用隐私风险自动化检测

AUTOMATED DETECTION OF PRIVACY RISKS IN ANDROID APPLICATIONS BASED ON DYNAMIC FEATURE SELECTION

高龙良 1杜素果 1杨金萍1

作者信息

  • 1. 上海交通大学安泰经济与管理学院 上海 200240
  • 折叠

摘要

Abstract

Aimed at the user privacy leakage problem that may exist in Android applications,an automated detection model based on machine learning methods is proposed.This model chose to use the permission items applied by the App as features,dynamically selected the feature set,and used four classical machine learning algorithms to independently train and predict.And the most suitable privacy risk detection model for Android applications was determined.Experimental results show that the model can achieve an average prediction accuracy of more than 95%for privacy risk applications.This model can better manage application risk and protect user privacy from multiple aspects,which has high social benefit and practical value.

关键词

隐私风险/权限/机器学习/动态特征选择

Key words

Privacy risk/Permission/Machine learning/Dynamic feature selection

分类

信息技术与安全科学

引用本文复制引用

高龙良,杜素果,杨金萍..基于动态特征选择的Android应用隐私风险自动化检测[J].计算机应用与软件,2024,41(6):312-319,8.

基金项目

国家自然科学基金项目(71671114). (71671114)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文