配电物联网边缘计算场景下基于改进ANFIS的电缆通道综合评估及智能预警方法研究OA北大核心CSTPCD
Comprehensive assessment and intelligent early warning of cable passages based on improved ANFIS in the edge computing scenario of PDIoT
针对配电网智能化运维需求和数智化坚强电网发展趋势,融合物联网和边缘计算技术,提出一种配电物联网边缘计算场景下基于改进自适应神经模糊推理系统(adaptive network-based fuzzy inference system,ANFIS)的电缆通道综合评估及智能预警方法.首先,借助边缘物联终端的数据采集和处理计算优势,基于设备感知层、物联网络层、数据平台层和应用展示层 4 层结构,对电缆通道综合监测系统进行设计.然后,为实现通信延时和计算延时最小,构造出分层边缘计算模型,并从实时价值密度、执行紧迫性、重要性量化分析三个方面,提出相应的任务卸载及调度方案,提升资源利用和任务执行效率.最后,利用相空间重构对ANFIS进行改进,迭代训练后用于电缆通道运行状态的综合评估.并通过层次聚类将电缆通道标记为不同的风险等级,为运维人员提供支持.算例部分结合工程实验,验证了该方法的可行性.
In view of the demand for intelligent operation and maintenance of distribution networks and the trend of digitalization of the smart grid,a comprehensive evaluation and intelligent early warning method for cable passages based on improved adaptive network-based fuzzy inference system(ANFIS)in the edge computing scenario of the distribution internet of things is proposed.First,leveraging the data collection and processing computing advantages of edge IoT terminals,a comprehensive monitoring system is designed based on the device perception,IoT network,data platform,and application display layers.Then,to minimize communication and computation delays,a hierarchical edge computing model is constructed,and corresponding task unloading and scheduling schemes are proposed from three aspects:real-time value density,execution urgency,and importance of quantitative analysis to improve resource utilization and task execution efficiency.Finally,the adaptive fuzzy inference system is improved by phase space reconstruction,and used for comprehensive evaluation of cable passages operational status after iterative training.The cable passages are calibrated to different risk levels through hierarchical clustering,and the feasibility of the model is verified through engineering experiments in a case analysis.
李宏川;赵宇;李彬;傅哲;张琦;张毅;王海冰
国网北京城区供电公司,北京 100034上海理工大学电气工程系,上海 200093
配电物联网边缘计算电缆通道综合评估
PDIoTedge computingcable passagescomprehensive evaluation
《电力系统保护与控制》 2024 (012)
94-103 / 10
This work is supported by the National Natural Science Foundation of China(No.51777126). 国家自然科学基金项目资助(51777126);国网北京市电力公司科技项目资助(520202230006)
评论