| 注册
首页|期刊导航|机械制造与自动化|基于粒子群算法优化BP神经网络的轴承故障诊断

基于粒子群算法优化BP神经网络的轴承故障诊断

樊怀聪 田禾 冯明文 曹冉冉

机械制造与自动化2024,Vol.53Issue(3):45-49,5.
机械制造与自动化2024,Vol.53Issue(3):45-49,5.DOI:10.19344/j.cnki.issn1671-5276.2024.03.009

基于粒子群算法优化BP神经网络的轴承故障诊断

Bearing Fault Diagnosis Based on PSO-BP Neural Network

樊怀聪 1田禾 1冯明文 1曹冉冉1

作者信息

  • 1. 天津理工大学机电工程国家级实验教学示范中心,天津 300384||天津理工大学天津市先进机电系统设计与智能控制重点实验室,天津 300384
  • 折叠

摘要

Abstract

PSO algorithm is applied to optimize the weight and threshold of BP neural network and conduct the fault diagnosis of rolling.The acceleration data of driving end and the acceleration data of fan end are taken as input to ouput three different states of bearing by training network,so as to realize the fault diagnosis of bearing.The simulation results show that the network model can accurately identify the running state and fault type of bearings,and the test accuracy of normal samples reaches 98%.Compared with BP neural network,the test accuracy is greatly improve with stronger generalization ability and higher feasibility.

关键词

轴承/故障诊断/BP神经网络/粒子群算法

Key words

bearing/fault diagnosis/BP neural network/PSO

分类

机械制造

引用本文复制引用

樊怀聪,田禾,冯明文,曹冉冉..基于粒子群算法优化BP神经网络的轴承故障诊断[J].机械制造与自动化,2024,53(3):45-49,5.

基金项目

国网天津市电力公司科技项目(KJ21-1-21) (KJ21-1-21)

机械制造与自动化

OACSTPCD

1671-5276

访问量0
|
下载量0
段落导航相关论文