| 注册
首页|期刊导航|计算机工程与应用|结合区域结构关系和自注意力的边卷积点云分类分割网络

结合区域结构关系和自注意力的边卷积点云分类分割网络

吕志玮 杨家志 周国清 沈露

计算机工程与应用2024,Vol.60Issue(13):171-179,9.
计算机工程与应用2024,Vol.60Issue(13):171-179,9.DOI:10.3778/j.issn.1002-8331.2304-0141

结合区域结构关系和自注意力的边卷积点云分类分割网络

Point Cloud Classification Segmentation Combining Inter-Region Structure Relations and Self-Attention Edge Convolution Network

吕志玮 1杨家志 2周国清 2沈露1

作者信息

  • 1. 桂林理工大学 信息科学与工程学院,广西 桂林 541006
  • 2. 桂林理工大学 信息科学与工程学院,广西 桂林 541006||广西嵌入式技术与智能系统重点实验室,广西 桂林 541006
  • 折叠

摘要

Abstract

A new network framework,ISEC-Net(inter-region structure relations and self-attention edge convolution net-work),is proposed to address the problem of insufficient capture of context and relational features within a region in point cloud networks for deep learning.The network consists of two modules:IrConv(inter-region convolution)and SaConv(self-attention convolution).The SaConv module can extract finer edge features,while the IrConv can dynamically inte-grate local structural information into point features and adaptively capture inter-regional relationships.Extensive experi-ments are conducted on the ModelNet40 and ShapeNet datasets for point cloud classification and part segmentation.The results show that on the ModelNet40 dataset,the overall accuracy(OA)of the ISEC-Net model reaches 93.5%,and the average accuracy(mAcc)reaches 90.7% .On the ShapeNet dataset,the average intersection-over-union(mIoU)reaches 86.1%,and the part segmentation accuracy of guitar,headphone,cup and other parts in the single-class intersection-over-union(IoU)experiment is excellent.This demonstrates that compared with traditional dynamic graph convolutional net-works,ISEC-Net can accurately capture the local features and fine structure of point clouds and enhance the aggregation of global features,thus having excellent effectiveness and generalization ability.

关键词

边卷积/区域上下文/区域关系/自注意力/深度学习

Key words

edge convolution/regional context/regional relationship/self-attention/deep learning

分类

计算机与自动化

引用本文复制引用

吕志玮,杨家志,周国清,沈露..结合区域结构关系和自注意力的边卷积点云分类分割网络[J].计算机工程与应用,2024,60(13):171-179,9.

基金项目

国家自然科学基金(62166012) (62166012)

广西创新驱动发展专项资金项目(桂科AA18118038) (桂科AA18118038)

广西科技基地和人才专项(桂科AD19254002). (桂科AD19254002)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文