| 注册
首页|期刊导航|农业机械学报|基于无人机多维数据集的森林地上生物量估测模型研究

基于无人机多维数据集的森林地上生物量估测模型研究

孙钊 谢运鸿 王宝莹 谭军 王轶夫 孙玉军

农业机械学报2024,Vol.55Issue(6):186-195,236,11.
农业机械学报2024,Vol.55Issue(6):186-195,236,11.DOI:10.6041/j.issn.1000-1298.2024.06.019

基于无人机多维数据集的森林地上生物量估测模型研究

Development of Forest Aboveground Biomass Estimation Model Based on Multidimensional Dataset of UAV

孙钊 1谢运鸿 2王宝莹 2谭军 1王轶夫 2孙玉军2

作者信息

  • 1. 中国地质调查局军民融合地质调查中心,成都 610036
  • 2. 北京林业大学森林资源和环境管理国家林业和草原局重点开放性实验室,北京 100083
  • 折叠

摘要

Abstract

Forest aboveground biomass(AGB)is an important indicator for evaluating forest growth.Based on the 2D and 3D data generated by digital aerial photography(DAP),totally 41 point clouds height variables and 16 visible light vegetation indices were calculated respectively,and AGB estimation models were developed with single variable set and comprehensive variable set respectively by using six regression algorithms(random forest,RF;bagged tree,BT;support vector regression,SVR;Cubist;categorical boosting,CatBoost;extreme gradient boosting,XGBoost)to explore the contribution of different variables to the AGB estimation model.The results showed that the highest accuracy AGB prediction models for spectral and point cloud datasets were Cubist and XGBoost,with R2 of 0.530 9 and 0.639 5,respectively,and the highest accuracy model for the combined dataset was XGBoost,with R2 of 0.760 1,and the XGBoost model had a higher stability of AGB estimation.The result also showed that the contribution of the six machine learning models mainly depended on the regression method considered,and the number of features chosen and the importance of the features to the model were not consistent across the models.DOM spectral features had a higher importance in the estimation of AGB.Overall,the combination of 2D and 3D data can effectively improve the accuracy of forest AGB estimation,and the RGB images acquired based on UAV tilt photography can realize the fast and nondestructive estimation of forest AGB.

关键词

森林地上生物量/估测模型/无人机密集点云/SfM/可见光植被指数/机器学习

Key words

forest aboveground biomass/estimation model/UAV dense point cloud/SfM/visible vegetation index/machine learning

分类

农业科技

引用本文复制引用

孙钊,谢运鸿,王宝莹,谭军,王轶夫,孙玉军..基于无人机多维数据集的森林地上生物量估测模型研究[J].农业机械学报,2024,55(6):186-195,236,11.

基金项目

中国地质调查局地质调查项目(DD20243093)和林业科学技术推广项目([2019]06) (DD20243093)

农业机械学报

OA北大核心CSTPCD

1000-1298

访问量0
|
下载量0
段落导航相关论文