| 注册
首页|期刊导航|农业机械学报|基于YOLO v7-ST-ASFF的复杂果园环境下苹果成熟度检测方法

基于YOLO v7-ST-ASFF的复杂果园环境下苹果成熟度检测方法

苗荣慧 李港澳 黄宗宝 李志伟 杜慧玲

农业机械学报2024,Vol.55Issue(6):219-228,10.
农业机械学报2024,Vol.55Issue(6):219-228,10.DOI:10.6041/j.issn.1000-1298.2024.06.023

基于YOLO v7-ST-ASFF的复杂果园环境下苹果成熟度检测方法

Maturity Detection of Apple in Complex Orchard Environment Based on YOLO v7-ST-ASFF

苗荣慧 1李港澳 2黄宗宝 3李志伟 1杜慧玲4

作者信息

  • 1. 山西农业大学信息科学与工程学院,太谷 030801||山西农业大学农业工程学院,太谷 030801
  • 2. 山西农业大学农业工程学院,太谷 030801
  • 3. 山西农业大学信息科学与工程学院,太谷 030801
  • 4. 山西农业大学基础部,太谷 030801
  • 折叠

摘要

Abstract

In response to large number of parameters and poor robustness of object detection algorithms in complex orchard environment,an improved YOLO v7 network for apple maturity(immature,semimature,mature)detection was proposed.With YOLO v7 as the baseline network,a window multi-head self-attention mechanism(Swin transformer,ST)was adopted into the feature extraction structure to greatly reduce the parameters and computational complexity.In order to improve the ability of the model for detecting small targets in distant images,adaptively spatial feature fusion(ASFF)module was adopted into the feature fusion structure to optimize the Head part,effectively utilizing shallow and deep features and enhancing the performance of the feature scale invariance.Wise intersection over union(WIoU)was used to replace the original complete intersection over union(CIoU)loss function,thus accelerating the convergence speed and detection accuracy.The experimental results showed that the improved YOLO v7-ST-ASFF model had significantly improved the detection speed and accuracy on the test set of the apple images.The average detection precision,recall,mean average precision(mAP)for different maturity levels can reach 92.5%,84.2%and 93.6%,all of which were better than that of Faster R-CNN,SSD,YOLO v3,YOLO v5,YOLO v7 and YOLO v8 object detection models.The detection effects were good for multi,single,front-light,backlight,distant and close targets,as well as bagged and unpacked targets.The size of the model was 53.4 MB,and the ADT was 45 ms,which was also better than that of other models.The improved YOLO v7-ST-ASFF model can meet the detection of apple targets in complex orchard environment,providing effective exploration for automated fruit and vegetable picking by robots.

关键词

苹果/成熟度检测/复杂果园环境/YOLO v7/窗口多头自注意力机制/ASFF

Key words

apple/maturity detection/complex orchard environment/YOLO v7/ST/ASFF

分类

信息技术与安全科学

引用本文复制引用

苗荣慧,李港澳,黄宗宝,李志伟,杜慧玲..基于YOLO v7-ST-ASFF的复杂果园环境下苹果成熟度检测方法[J].农业机械学报,2024,55(6):219-228,10.

基金项目

财政部和农业农村部:国家现代农业产业技术体系建设项目(CARS-06-14.5-A21)、中央引导地方科技发展资金项目(YDZJSX20231A042)、山西省谷子现代农业产业技术体系建设项目(2023CYJSTX04-04)、山西省重点研发重大项目(2022ZDYF119)和山西省基础研究计划项目(202203021212428) (CARS-06-14.5-A21)

农业机械学报

OA北大核心CSTPCD

1000-1298

访问量0
|
下载量0
段落导航相关论文