| 注册
首页|期刊导航|人民长江|基于注意力机制与LSTM-CCN的月降水量预测

基于注意力机制与LSTM-CCN的月降水量预测

周祥 张世明 苏林鹏 张守平

人民长江2024,Vol.55Issue(6):129-135,7.
人民长江2024,Vol.55Issue(6):129-135,7.DOI:10.16232/j.cnki.1001-4179.2024.06.018

基于注意力机制与LSTM-CCN的月降水量预测

Monthly precipitation prediction based on attention mechanism and LSTM-CCN

周祥 1张世明 2苏林鹏 3张守平1

作者信息

  • 1. 重庆水利电力职业技术学院,重庆 402160||水库安全及水环境大数据重庆市高校工程中心,重庆 402160
  • 2. 长江水利委员会水文局长江上游水文水资源勘测局,重庆 400020
  • 3. 重庆市渝西水利电力勘测设计院有限公司,重庆 402160
  • 折叠

摘要

Abstract

To address the issue of low accuracy in existing monthly precipitation prediction methods,an attention mechanism and LSTM-CCN for the monthly precipitation prediction method were proposed.Firstly,the long short-term memory neural net-work(LSTM)was used to extract the temporal feature distribution of meteorological data,capturing the statistical distribution in adjacent or long-distance meteorological data segments from a temporal correlation perspective.Secondly,the causal convolution-al network(CCN)projected meteorological data to the spatial dimension,deeply capturing the statistical distribution of spatial features of meteorological data.Thirdly,the time and space features were input into the cross-attention network in parallel,con-structing a fused spatiotemporal feature.Finally,a decoder constructed with the long short-term memory neural network took the fused spatiotemporal feature as input,and the predicted monthly precipitation served as the output.The test was carried out on the data set from Xinxiang City,Henan Province from 2001 to 2017.The results showed that the proposed method's root mean square error was only 13.08 mm,demonstrating lower prediction errors compared to mainstream methods.The introduction of this work contributes to enhancing the accuracy and practicality of meteorological predictions.

关键词

月降水量预测/多层注意力机制/因果卷积神经网络/长短时记忆神经网络

Key words

monthly precipitation prediction/multi-layer attention mechanism/causal convolutional neural network/long short-term memory neural network

分类

建筑与水利

引用本文复制引用

周祥,张世明,苏林鹏,张守平..基于注意力机制与LSTM-CCN的月降水量预测[J].人民长江,2024,55(6):129-135,7.

基金项目

重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0132) (CSTB2022TIAD-KPX0132)

人民长江

OA北大核心CSTPCD

1001-4179

访问量0
|
下载量0
段落导航相关论文