首页|期刊导航|四川轻化工大学学报(自然科学版)|基于改进DBO算法的水轮机调节系统优化仿真

基于改进DBO算法的水轮机调节系统优化仿真OA

Optimization and Simulation of Hydraulic Turbine Regulating System Based on Improved DBO Algorithm

中文摘要英文摘要

针对传统的水轮机调节系统中PID控制存在的响应速度慢和稳定性较差等问题,本文提出了一种改进的蜣螂优化算法(DBO),旨在提高系统性能以满足电力系统动态需求的日益复杂性.首先,本文分析并建立了水轮机调节系统的数学模型.其次,通过引入Tent混沌初始化和精英反向学习策略对DBO算法进行改进,并使用4个基准函数验证了改进算法的先进性.最后,将改进后的混沌精英蜣螂算法(TEDBO)应用于水轮机调节系统的PID调速模块,并进行了MATLAB仿真实验,分别在空载频率扰动和负荷扰动下进行了测试.实验结果表明,在5%频率扰动下,相比于传统粒子群算法(PSO)和万有引力算法(GSA),改进后的TEDBO算法优化的PID调速器调节时间缩短了5个时间单位,超调量减小至0.23%;在10%负荷扰动下,目标函数的最优适应度仅为0.004 000,进一步验证了改进的TEDBO算法在水轮机调节系统优化方面的显著优势.

In response to the slow response speed and poor stability issues inherent in traditional hydraulic turbine regulating systems employing PID control,an improved Dung Beetle Optimizer(DBO)has been proposed in the paper.The goal is to enhance system performance to meet the increasingly complex dynamic requirements of power systems.Firstly,the mathematical model of the hydraulic turbine regulation system is analyzed and established.Subsequently,the DBO algorithm is refined by introducing Tent chaotic initialization and an elite reverse learning strategy.The superiority of the enhanced algorithm is validated using four benchmark functions.Finally,the improved Tent Elite Dung Beetle Optimizer(TEDBO)is applied to the PID speed control module of the hydraulic turbine regulation system,and MATLAB simulations are conducted to test its performance under conditions of no-load frequency disturbance and load disturbance.The experimental results indicate that under a 5%frequency disturbance,the PID speed controller optimized by the improved TEDBO algorithm reduces the adjustment time by 5 time units and decreases the overshoot to 0.23%compared to the traditional Particle Swarm Optimization(PSO)and Gravitational Search Algorithm(GSA).Furthermore,under a 10%load disturbance,the optimal fitness value of the objective function is minimized to 0.004 000.This outcome underscores the considerable efficacy of the improved TEDBO algorithm in enhancing the performance of hydraulic turbine regulation systems.

付永康;杨毅强;雷佳琦

四川轻化工大学自动化与信息工程学院,四川 宜宾 644000四川轻化工大学自动化与信息工程学院,四川 宜宾 644000四川轻化工大学自动化与信息工程学院,四川 宜宾 644000

水利科学

改进蜣螂算法水轮机调节系统PID参数优化

improved dung beetle optimizer algorithmhydraulic turbine regulating systemPID parameter optimization

《四川轻化工大学学报(自然科学版)》 2024 (3)

59-66,8

四川省科技厅项目(2022YFS0518)

10.11863/j.suse.2024.03.08

评论