| 注册
首页|期刊导航|四川轻化工大学学报(自然科学版)|基于改进YOLOv5的轻量化车辆行人雾天检测模型

基于改进YOLOv5的轻量化车辆行人雾天检测模型

肖顺兴 朱文忠 谢康康 谢林森 何海东

四川轻化工大学学报(自然科学版)2024,Vol.37Issue(3):77-86,10.
四川轻化工大学学报(自然科学版)2024,Vol.37Issue(3):77-86,10.DOI:10.11863/j.suse.2024.03.10

基于改进YOLOv5的轻量化车辆行人雾天检测模型

Lightweight Vehicle and Pedestrian Fog Detection Model Based on Improved YOLOv5

肖顺兴 1朱文忠 1谢康康 1谢林森 1何海东1

作者信息

  • 1. 四川轻化工大学计算机科学与工程学院,四川 宜宾 644000
  • 折叠

摘要

Abstract

Vehicle and pedestrian detection is an important part of intelligent transportation.Aiming at the problem that the existing vehicle detection algorithm model has large capacity,large number of parameters,and large memory occupation,which is difficult to be applied to edge devices with limited computing power and memory in intelligent transportation scenarios,thus an improved lightweight object detection network based on YOLOv5s algorithm has been proposed.Firstly,the convolution module of YOLOv5s network is replaced with Ghost convolution to reduce the amount of computation and parameters.Secondly,the improved weighted bidirectional Feature Pyramid Network(BiFPN)structure and non-maximum suppression(NMS)is adopted to improve the accuracy of the model.Lastly,the model is trained and verified via Real-world Task-Driven Testing Set(RTTS)foggy data set to test the effectiveness of the model.The experimental results show that the lightweight fog detection model of the improved YOLOv5 has an average detection accuracy of 88.5%on the image with a resolution of 640×640,whose size is about 7.5 M,and the floating-point calculation amount is 8.20 GFLOPs.Compared with the original YOLOv5s network,the size of the improved model is reduced by 46.4%,the floating-point computation is compressed to 52%,the accuracy is improved by 0.9%,the regression rate is increased by 0.5%,and the average accuracy is improved by 1.1%.The improved vehicle detection algorithm not only ensures high detection accuracy while being lightweight in the model,but also meets the needs of vehicle detection in edge devices with limited computing resources.

关键词

目标检测/轻量级/YOLOv5s/Ghost卷积

Key words

target detection/lightweight/YOLOv5s/Ghost convolution

分类

信息技术与安全科学

引用本文复制引用

肖顺兴,朱文忠,谢康康,谢林森,何海东..基于改进YOLOv5的轻量化车辆行人雾天检测模型[J].四川轻化工大学学报(自然科学版),2024,37(3):77-86,10.

基金项目

四川省科技研发重点项目(2023YFS0371) (2023YFS0371)

四川省科技创新(苗子工程)培育项目(2022049) (苗子工程)

企业信息化与物联网测控技术四川省高校重点实验室基金项目(2022WYY03) (2022WYY03)

四川轻化工大学学报(自然科学版)

2096-7543

访问量0
|
下载量0
段落导航相关论文