基于CSNet网络的肺炎图像分类研究OA
Research on Pneumonia Image Classification Based on CSNet Network
X 射线图像是肺炎疾病诊断的重要影像依据.由于肺部疾病的多样性,肺炎诊断的准确率有待进一步提高.本文在ConvNeXt网络模型的基础上进行改进,提出一个新的卷积神经网络模型CSNet,用于对X射线肺炎图像进行四分类.CSNet 网络模型在 ConvNeXt 网络模型的基础上改变了原有的图像预处理部分和池化层,在卷积块中添加了一个特征通道注意力模块,以突出特征图中的肺炎信息.在注意力模块的基础上修改激活函数并进行比较,最终选择SMU 激活函数.消融实验证明各模块的有效性,并与 7 个网络进行对比实验证明该网络的有效性.实验结果表明,与其他网络模型相比,本文模型的准确率最高,达到99.0%,同时精确率和召回率更高.
X-ray images are an important imaging basis for the diagnosis of pneumonia disease.Due to the diversity of lung diseases,the accuracy of pneumonia diagnosis needs to be further improved.Based on the ConvNeXt network model,a new convolutional neural network model CSNet is proposed for four classification of X-ray pneumonia images.Based on the ConvNeXt network model,the CSNet network changed the original image preprocessing part and pooling layer,and added a feature channel attention module to the convolution block to highlight the pneumonia information in the feature map.On the basis of the attention module,the activation function was modified and compared,and finally the SMU activation function was selected.The effectiveness of each module was proved by ablation experiments,and the effectiveness of the network was verified by comparative experiments with 7 networks.Experimental results show that compared with other network models,the proposed model has the highest accuracy of 99.0%,and the precision and recall are higher.
刘玉良;白玉洁
天津科技大学电子信息与自动化学院,天津 300222天津科技大学电子信息与自动化学院,天津 300222
计算机与自动化
肺炎卷积神经网络图像分类X射线图像
pneumoniaconvolutional neural networkimage classificationX-ray image
《天津科技大学学报》 2024 (3)
49-55,7
国家自然科学基金资助项目(52378254)
评论