基于双通道交叉融合的卷积神经网络图像识别方法研究OA
Research on the Image Recognition Method of Convolutional Neural Networks Based on Dual-channel Cross-fusion
针对单通道卷积神经网络的特征提取不够充分、深度网络存在训练困难的问题,提出一种双通道交叉融合的卷积神经网络模型.该模型包括三个特征提取阶段,每个阶段分两条通道进行图像卷积,当两条通道的卷积结束后进行特征交叉融合,经过三次交叉融合后输入到全局平均池化层以及全连接层中得到分类结果.将该模型应用于Cifar10、Cifar100 和Fashion-MNIST的图像分类任务以验证模型的有效性.结果表明,双通道交叉融合模型可以在当前支持GPU加速的主流笔记本电脑上进行训练,在同样规模的数据集上具有比同类其他模型更好的分类性能.
In response to the problems of insufficient feature extraction in single-channel Convolutional Neural Networks and the difficulty in training deep networks,a dual-channel cross-fusion Convolutional Neural Networks model is proposed.This model includes three feature extraction stages,with each stage performing image convolution through two separate channels.After the convolution of the two channels is completed,feature cross-fusion is carried out.After three rounds of cross-fusion,the features are input into a global average pooling layer and a fully connected layer to obtain classification results.This model is applied to image classification tasks on Cifar10,Cifar100,and Fashion-MNIST to verify its effectiveness.The results show that the dual-channel cross-fusion model can be trained on current mainstream laptops that support GPU acceleration,and it exhibits better classification performance than other similar models on datasets of the same scale.
黄曼曼;王松林;周正贵;侯秀丽
安徽商贸职业技术学院 信息与人工智能学院,安徽 芜湖 241002
计算机与自动化
卷积神经网络双通道融合分类准确率
Convolutional Neural Networksdual-channelfusionclassificationaccuracy
《现代信息科技》 2024 (012)
47-51,55 / 6
安徽省质量工程项目(2021zyyh021,2021jyxm0461);安徽商贸职业技术学院重点科研项目(2021KZZ01);安徽省教学示范课(2020SJ1069);安徽省精品课程(2022jpkc048)
评论