基于Mixup训练及多模型决策融合的腰椎间盘突出诊断OA
Diagnosis of Lumbar Disc Herniation Based on Mixup Training and Decision Fusion of Multiple Models
医疗多中心数据集的分布是存在差异的,由单一中心数据集训练的模型泛化性往往不佳,导致训练好的模型在应用时受到很大的限制.Mixup训练方法能够有效提升模型泛化性,基于Dempster-Shafer证据理论(Dempster-Shafer Evidence Theory,DST)的模型融合方法能够有效融合多个模型的最佳决策.因此,针对单一中心训练的医疗模型泛化性较差的问题,通过Mixup训练增强模型的泛化性能,并采用多模型决策融合的方式获得最佳决策结果,提出了一个针对腰椎间盘突出诊断的有效模型.经过外部测试集测试,该方法获得了88.22%的分类准确率、88.12%的F1分数和87.69%的AUC值.
The distribution of multi-center medical datasets is different,and the generalization of the model trained by single-center datasets is often poor,resulting in great limitations in application.Mixup training can effectively improve the generalization of the model,and the model fusion method based on Dempster-Shafer evidence theory(DST)can effectively fuse the best decision of multiple mod-els.Therefore,we propose an effective model for the diagnosis of lumbar disc herniation in response to the poor generalization of medical models trained by single-center datasets.The generalization of the model is enhanced by Mixup training,and the best decision is obtained by the method of multi-model decision fusion based on DST.After testing on the external test set,the method obtains 88.22%classifi-cation accuracy,88.12%F1 score and AUC value of 87.69%.
李英;陈健;苏志海;海金金;闫镔
信息工程大学,河南 郑州 450001中山大学附属第五医院脊柱外科,广东 珠海 519000
计算机与自动化
腰椎核磁影像腰椎间盘突出诊断Mixup多模型决策融合
lumbar magnetic resonance imaginglumbar disc herniationMixupmulti-model fu-sion decision
《信息工程大学学报》 2024 (003)
265-271 / 7
评论