| 注册
首页|期刊导航|现代信息科技|基于Attention机制的CNN-LSTM概率预测模型的股指预测

基于Attention机制的CNN-LSTM概率预测模型的股指预测

高欣

现代信息科技2024,Vol.8Issue(12):155-159,163,6.
现代信息科技2024,Vol.8Issue(12):155-159,163,6.DOI:10.19850/j.cnki.2096-4706.2024.12.033

基于Attention机制的CNN-LSTM概率预测模型的股指预测

Stock Index Prediction Based on CNN-LSTM Probability Prediction Model with Attention Mechanism

高欣1

作者信息

  • 1. 安徽大学 大数据与统计学院,安徽 合肥 230601
  • 折叠

摘要

Abstract

Given the high volatility of the securities market and the high difficulty of predicting it,this paper integrates the Attention Mechanism into the CNN-LSTM model based on the encoder-decoder structure.The Attention Mechanism is used to capture data dependency patterns between different time points,long series information is extracted,and based on this,a probability density function is provided for sampling prediction,point prediction and interval prediction of stock prices are obtained ultimately.The experimental results show that the CNN-LSTM probability prediction model incorporating the Attention Mechanism outperforms other benchmark models in terms of comprehensive performance,and can make high-precision multi-step predictions of the closing price of the Shanghai Composite Index.

关键词

Attention机制/概率密度函数/上证指数

Key words

Attention Mechanism/probability density function/Shanghai Composite Index

分类

信息技术与安全科学

引用本文复制引用

高欣..基于Attention机制的CNN-LSTM概率预测模型的股指预测[J].现代信息科技,2024,8(12):155-159,163,6.

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文